
HP9800E – HP9800 Emulator
Release 1.41
User Manual

Copyright (C) 2006-2009 Dr. Achim Bürger

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Disclaimer
HP9800E and the project web site is in no way associated with the Hewlett-Packard
Company.

Hewlett-Packard, HP, and the HP logos are all trademarks of the Hewlett-Packard
Company. This document is intended solely for research and education purposes.

1

Contents
0. Preface...5
1. General Features...5

1.1 Machine Configuration Files..5
1.1.1 Search Strategy for Configuration Files...6
1.1.2 Calculator Model Configuration..6
1.1.3 ROM configuration...6
1.1.4 Empty ROM Slots...7
1.1.5 RWM configuration...7
1.1.6 Peripheral Device Configuration..8
1.1.7 Breakpoint Configuration..8
1.1.8 Watchpoint Configuration...8
1.1.9 Example Configurations...9

1.2 Exchanging of ROM blocks...10
1.3 Display of User Instructions...11
1.4 Keyboard Configuration Files..12

1.4.1 Display of the Keyboard Mapping..12
1.4.2 Predefined Keys...15

1.5 General Limitations...15
2. Implemented Machines..16

2.1 HP9830A Personality...16
2.1.1 Implemented Features...16

2.1.1.1 ROM..16
2.1.1.2 RWM...17
2.1.1.3 I/O Devices..17

2.1.2 Limitations..17
2.1.3 User Interfaces...18

2.1.3.1 Display...18
2.1.3.2 Keyboard...18

2.1.4 Internal Devices..20
2.1.4.1 Tape Drive...20

2.2 HP9820A Personality...21
2.2.1 Implemented Features...21

2.2.1.1 ROM..21
2.2.1.2 RWM...21
2.2.1.3 I/O Devices..22

2.2.2 Limitations..22
2.2.3 User Interfaces...22

2.2.3.1 Display...22
2.2.3.2 Keyboard...22

2.2.4 Internal Devices..25
2.2.4.1 Printer..25
2.2.4.2 Magnetic Card Reader..25

2.3 HP9821A Personality...26
2.3.1 Implemented Features...26

2.3.1.1 ROM..26
2.3.1.2 RWM...26
2.3.1.3 I/O Devices..26

2.3.2 Limitations..27

2

2.3.3 User Interfaces...27
2.3.3.1 Display...27
2.3.3.2 Keyboard...27

2.3.4 Internal Devices..27
2.3.4.1 Printer..27
2.3.4.2 Tape Drive...28

2.4 HP9810A Personality...29
2.4.1 Implemented Features...29

2.4.1.1 ROM..30
2.4.1.2 RWM...30
2.4.1.3 I/O Devices..31

2.4.2 Limitations..31
2.4.3 User Interfaces...31

2.4.3.1 Display...31
2.4.3.2 Keyboard...31

2.4.4 Internal Devices..34
2.4.4.1 Printer..34
2.4.4.2 Magnetic Card Reader..34

2.4.5 Notes on use of the HP9865A tape drive...35
3. External Devices..39

3.1 HP9860A Marked Card Reader...39
3.1.1 General Information..39

3.1.1.1 Configuration...39
3.1.2 Usage of the HP9860A...40
3.1.3 Reading of HP9810A programs...40
3.1.4 Reading of HP9820/21A programs..40
3.1.5 Reading of HP9830A programs...40

3.2 HP9861A Output Typewriter..41
3.2.1 General Information..41

3.2.1.1 Configuration...41
3.2.2 Usage of the HP9861A...42

3.3 HP9862A Plotter..43
3.3.1 General Information..43

3.3.1.1 Configuration...44
3.3.2 Usage of the HP9862A...44

3.4 HP9865A Cassette Memory...45
3.4.1 General Information..45

3.4.1.1 Configuration...45
3.4.2 Usage of the HP9865A...45

3.5 HP9866A Thermal Line Printer..47
3.5.1 General Information..47

3.5.1.1 Configuration...47
3.5.2 Usage of the HP9866A...48

3.6 HP9880A/B Mass Memory System...49
3.6.1 General Information..49

3.6.1.1 Configuration...49
3.6.2 Usage of the HP9880A/B...49
3.6.3 Initializing discs...50
3.6.4 Note on Usage of the Infotek Fast Basic II ROM...51

3.7 HP11202A I/O Interface...52

3

3.7.1 General Information..52
3.7.1.1 Configuration...52

3.7.2 Usage of the HP11202A...52
3.7.3 Saving and Loading of HP9810A programs...53
3.7.4 Saving and Loading of HP9830A programs...53

4. Installation and Running..54
5. Known Issues...55

5.1 HP9830A..55
5.2 Peripheral Devices...55
5.3 Java Issues..55

6. The Project...56
6.1 Literature and Links...57

7. Contributions to the Project..59
7.1 Contributors...59

A Creation and Execution of Assembler Programs...60
A.1 HP9810A...60

A.1.1 Coding the Program...60
A.1.2 Entering the Program...61
A.1.3 Executing the Program..61
A.1.4 Example Program..62

A.2 HP9830A...63
A.2.1 Coding the Program...64
A.2.2 Entering the Program...65
A.2.3 Executing the Program..65

A.3 HP9820A / HP9821A...66
A.3.1 Coding the Program...66
A.3.2 Entering the Program...67
A.3.3 Executing the Program..68

B Machine Instruction Set..69
C Using the HP9800 Console..80

C.1 Disassembler Functions..80
C.2 Usage of the Disassembler...81

C.2.1 Online Disassembler Mode..81
C.2.2 Single Step Mode..82
C.2.3 Breakpoints..82
C.2.4 Watchpoints...82

C.3 Key-Log Mode...82
C.3.1 Creating Keyboard Configuration Files..83

4

0. Preface
HP9800E is intended as a complete emulation of the hardware of the famous first family of
Hewlett-Packard desktop calculators, i.e. HP9810A, HP9820A, HP9821A, and
HP9830A/B.
The emulator is able to run the complete ROM-based firmware of the above models and
the application programs written in the model specific programming language. Moreover
the user interfaces (display, keyboard, printer), mass memory devices (magnetic card
reader, tape drive, disc drive), and other external devices can be emulated to resemble the
complete functionality of the original machine.
To enhance the realism of the emulation part of the outside appearance is graphically dis-
played and some of the mechanical sounds (beeper, cooling fan, drive motors, etc.) can
be output via a sound card.
The emulator is completely written in Java 2 and platform independent.

1. General Features
The HP9800E kernel is an emulation of the CPU which was common to all calculators of
the 9800-family. All CPU instructions are implemented, including I/O and floating point.
The instruction set is briefly described in the U.S. patent 3,859,635. During development
some of the descriptions turned out to be incomplete or incorrect. In such cases the beha-
viour of these instructions was modified to achieve an error free operation of the machine.
The CPU communicates with the 'I/O-register and gate interface' and the memory unit,
consisting of read only (ROM) and read/write memory (RWM). Via the I/O-bus the IO-re-
gister is connected to all internal and external devices (display, keyboard, printer, etc.).
The complete device I/O protocols are implemented, including service request (interrupt).
The peripheral devices work in separate program threads, so that parallel and real time
operation of the calculator mainframe and peripheral devices is possible. The machine
firmware, originally residing in ROMs, was extracted from the original hardware and is ex-
ecuted without any modification by the CPU emulation. The ROM areas of the memory are
write protected in the emulator and behave as the original. The complete memory equip-
ment is configurable to resemble several memory expansion options. The presence of
plug-in ROM blocks can also be configured and ROM blocks can be exchanged at
runtime.
The emulator also contains a complete disassembler, which, when activated, disas-
sembles each CPU instruction prior to execution, dumps the contents of the CPU registers
A, B, and E, the IO register, various flags, and the pseudo registers AR1 and AR2, used
for floating point operations. The disassembler can be activated either interactively or by
setting breakpoints or watchpoints in the calculator memory. The disassembler output is
displayed in a separate, scrollable window.
In a special trace mode, activated either manually in the disassembler window or by a
breakpoint, the cpu instructions can be executed step by step or in a 'slow motion' with
variable time intervals.

1.1 Machine Configuration Files
The emulated machines can be customized by means of a configuration file. The configur-

5

ation file defines the layout and size of the calculator memory areas, type and position of
ROM modules, and external devices which are connected to the machine. For one specific
calculator model there can be several configuration files for different combinations of
RWM, ROM, and peripheral devices.
The configuration file is a plain text file and contains one configuration item per line. Each
configuration item consists of a type, name, address or select code fields, and an internal
slot identification.
The configuration file may contain comment lines, which are not evaluated. Comment lines
have to start with a semicolon.
Example:
; This is a comment line

1.1.1 Search Strategy for Configuration Files
Every configuration file is searched first in the current working directory (normally the dir-
ectory where the emulator is started from).
If there is no customized configuration file found in this place, the emulator looks for the
standard configuration file in the installation directory, where the file HP9800E.jar is loc-
ated.
If this is also not present, the configuration is loaded from the directory /config/ in the
HP9800E.jar itself.
If the configuration file not found in any of these locations the emulator is terminated.

1.1.2 Calculator Model Configuration
The first line of the configuration file must define the calculator model and version. In this
release the version information is used only for the HP9810A which exists in version 1 and
2.
Examples:
Model HP9830A 1
Model HP9810A 2

The following lines define memory blocks of different type and sizes. There are two types
of memory: RWM (Read-Write-Memory) and ROM (Read-Only-Memory). The areas where
RWM and ROM are located are specific and fixed for each calculator model.

1.1.3 ROM configuration
The ROM areas may be divided in several sections, e.g. for build-in system ROM and ad-
ditional ROM modules. Each ROM block has a 16bit start address and block size. Both
values have to be given as octal values. Each ROM block has a name which references a
file which contains the ROM data. At startup of the emulator the referenced ROM files are
read into the calculator memory.
Examples:
ROM 016000 001000 HP9830A_System8 Block16

6

ROM 040000 000400 HP9830A_System9 Block40
ROM 020000 002000 HP11274B Slot1
ROM 022000 002000 HP11271B Slot2

A system ROM block has a specific start address and can only be used at this position.
The block name has the form <Calculator Model>_System#. Each memory block (ROM or
RWM) needs a unique block-id. The block-id for system ROM block is arbitrary but has to
be unique between all memory blocks, conventionally the block-id contains the octal start-
ing address of the block. For plug-in ROMs the block-id must be in the form Slot#, where #
is the position of the calculators ROM slot. In the real calculator each slot corresponds to a
fixed address range (e.g. in the HP9810A Slot1 uses addresses from 002000 to 003777
octal). In the emulator one can assign a different address range although this will probably
lead to malfunction or hangup of the emulation.
Add-on ROM blocks may be positioned at different start addresses although not every po-
sition is useful. E.g. the HP9810A Mathematics ROM block may be plugged in every of the
three ROM slots of the calculator but will only be functional in the first slot (address
002000). The block name is identical to the HP product number of the original ROM, e.g.
HP11220A.
Since release 1.4 each ROM has an additional description file which contains the valid
slots and/or address positions for the particular ROM and calculator. During startup each
ROM in the calculator configuration is validated against the corresponding ROM descrip-
tion. If a conflict is detected, the cause is logged in the command console and the emulator
startup is aborted. If a ROM is later plugged in manually the same check is performed and
the ROM is activated only if no conflict is detected (see chapter 1.2).
The assigned address range for ROM blocks is marked read-only for the calculator CPU,
so the contents may not be changed by any program.

1.1.4 Empty ROM Slots
If any ROM slot should be left empty at startup, then the corresponding configuration items
have to be set to a dummy ROM block HP11XXXX, otherwise the related memory range
will not be initialized correctly. E.g. if the ROM slots 2 and 3 of the HP9810A should be
empty at startup, the configuration file must contain:
ROM 006000 002000 HP11XXXX Slot2
ROM 010000 002000 HP11XXXX Slot3

The HP11XXXX dummy ROM simply contains 0 (zero) values of each memory location.
See also chapter 1.2.

1.1.5 RWM configuration
Areas of Read-Write-Memory are defined by RWM blocks. A RWM block is defined similar
to a ROM block with start address and block size (in octal values), a block name, and a
slot-id. The block name is arbitrary and for information purpose only. RWM block names
are typically System or HP product numbers of memory expansions. The slot-id is also ar-
bitrary but has to be unique between all memory blocks (RWM and ROM). Memory blocks
with the same block-id 'overwrite' each other in the internal configuration.
Examples:

7

RWM 001400 000400 HP9830A_System 10
RWM 040400 007400 HP9830A_User 11
RWM 050000 010000 HP11275F 12

1.1.6 Peripheral Device Configuration
Peripheral devices which shall be attached to the calculator are defined by configuration
items of type DEV. The name field contains the HP product number of the device (e.g.
HP9862A for a plotter). The last entry of the configuration line is a optional select code.
Some devices have fixed select code which can not be changed (e.g. the HP9862A has
fixed select code 14). In such cases the select code entry is ignored. Other devices need a
specific select code which has to be unique between all internal and external devices.
Refer to the original documentation of the specific peripheral device and calculator for pos-
sible select codes.
Examples:
DEV HP9862A
DEV HP9865A 5

1.1.7 Breakpoint Configuration
The emulator contains a run-time disassembler for inspection and analysis of machine pro-
grams (appendix C). Normally the disassembler is inactive and can be enabled manually
in the disassembler dialog window.
In the configuration file breakpoint addresses can be defined at machine instruction level.
As soon as the CPU program counter reaches a breakpoint address the execution of the
machine instructions is halted and the disassembler dialog window is automatically
opened. The instruction at the breakpoint address is shown in the disassembler list but not
yet executed. The execution can be continued by either using the single step mode or re-
suming to the normal run mode.
Breakpoint addresses have to be given as octal values from 0 to 77777. There can be a
arbitrary number of breakpoints defined without significant performance drawback. Break-
points are only evaluated when the associated memory address is accessed.
Example:
Breakpoint 05733

1.1.8 Watchpoint Configuration
In the configuration file memory watchpoint addresses can be defined. A watchpoint is a
memory location which is checked every time it is accessed by a CPU instruction either in
read or write mode. A watchpoint can be conditional or unconditional. A conditional watch-
point is further characterized by a watch condition and a test value. The content of the
watched memory location is compared with the test value by a comparison operator. If the
result is true, the watchpoint condition is met. In an unconditional watchpoint the memory
content is ignored.
As soon as a CPU instruction accesses the memory location identified by the watchpoint
address, the contents of this memory location is tested against the watchpoint condition. If

8

the condition is met, the current instruction is finished, then the machine program execu-
tion is halted and the disassembler dialog window is automatically opened. The next CPU
instruction is shown in the disassembler list but not yet executed. The execution can be
continued by either using the single step mode or resuming to the normal run mode.
Watchpoint addresses have to be given as octal values from 0 to 77777. For conditional
watchpoints a test value and a watch condition may be defined. The test value can be any
unsigned 16 bit octal value between 0 and 177777. The watch condition is defined by one
of the comparison operators (=, <, >).
There can be a arbitrary number of breakpoints defined without significant performance
drawback. Watchpoints are only evaluated when the associated memory address is ac-
cessed.
Examples:
Watchpoint 01000 07777 =
Watchpoint 05600

1.1.9 Example Configurations
This is n example of a complete configuration file for the HP9830A calculator:
Model HP9830A 1
ROM 000000 001400 HP9830A_System1 1
ROM 002000 002000 HP9830A_System2 2
ROM 004000 002000 HP9830A_System3 3
ROM 006000 002000 HP9830A_System4 4
ROM 010000 002000 HP9830A_System5 5
ROM 012000 002000 HP9830A_System6 6
ROM 014000 002000 HP9830A_System7 7
ROM 016000 001000 HP9830A_System8 8
ROM 040000 000400 HP9830A_System9 9
RWM 001400 000400 HP9830A_System 10
RWM 040400 007400 HP9830A_User 11
RWM 050000 010000 HP11275F 12
RWM 060000 016000 HP11276F 13
ROM 017000 001000 INFOTEK_FB2 Int0
ROM 024000 002000 INFOTEK_FB1 Int1
ROM 030000 002000 INFOTEK_FB3 Int2
ROM 032000 002000 HP11272B Int3
ROM 036000 002000 HP11273B Slot1
ROM 034000 002000 HP11274B Slot2
ROM 020000 002000 HP11289B Slot3
ROM 022000 002000 HP11279B Slot4
ROM 026000 002000 HP11271B Slot5
;ROM 026000 002000 HP11270B Slot5 (alternative Matrix ROM)
DEV HP9860A
DEV HP9862A
DEV HP9865A 5
DEV HP9866A 15
DEV HP9880A 1
RWM 077000 000400 HP11273_Cache HP11305A

9

DEV HP11202A 1

1.2 Exchanging of ROM blocks
Plug-in ROM blocks may be exchanged in all emulated calculators at run-time. To achieve
this in the HP9810A or HP9820A click with the left mouse-button on the module to be ex-
changed (on the calculator left side above the LED display). Then a dialog window is
opened in which all available plug-in ROMs are visible. Click on one of the symbolic ROMs
to select it for use in the same slot as the previous. If no ROM has to be used (the slot
should be empty) click on the first symbol showing the slot cover. In this case a dummy
ROM block HP11XXXX with 0 (zero) byte values will be used in the address range of the
slot.
Since release 1.4 the chosen ROM slot is validated against the ROM description file (see
chapter 1.1.3). If the ROM is not compatible with this slot it is unloaded and the previous
ROM in this slot is reloaded. This may occur with several HP9810A ROMs. E.g. The
HP11211A PRINTER ALPHA ROM can only be plugged into slot 3.
ROM exchange in the HP9830A is somewhat tricky since the plug-in ROMs are covered in
the left side of the calculator housing and normally not visible. One has to click somewhere
in an area in the LED display, above the function keys. Then a dialog window is opened
which shows the ROM slots. Now click on the ROM position to be exchanged. A Second
dialog window is opened which shows the available plug-in ROMs. Click on one of the
symbolic ROMs to select it for use in the same slot as the previous. If no ROM has to be
used click on the first symbol showing an empty slot. The newly select ROM is now dis-
played in position. Choose another ROM to exchange or close the slot window by clicking
on the upper right corner.

After exchange of a ROM block the calculator should be restarted by the key combination
Ctrl+Alt+R. This has the same effect as switching the real calculator off and on. For certain

10

HP9830A ROM selector dialog HP9830A ROM housing with one empty slot

ROMs this procedure is necessary to prevent the calculator from erratic behaviour or
hang-up.

1.3 Display of User Instructions
Since release 1.4 there is a facility to display one ore more pages of user instructions for
each plug-in ROM as well as for the calculator itself. The user instructions where extracted
from the original operating manuals as far as these had been available and contained in-
struction summary pages or error codes.
The ROM specific user instructions may be displayed by clicking with the right mouse-but-
ton on the plugged ROM module. On the HP9830A the ROM slot window has to be
opened before the instructions can be displayed (see above ch. 1.2).

Then a popup window opens and shows the first instructions page. If there are more
pages clicking with the left mouse-button on the instruction page loads the next one. If the
last page was displayed the cycle begins again with page one.
Calculator specific user instructions for the HP9810A and HP9820A may be displayed by
clicking with the right mouse-button on the handle of the top cover (above the printer and
magnetic card reader). For the HP9830A right-clicking on the 'hot spot' for the ROM win-
dow does the job (see above ch. 1.2).

11

User Instructions for the HP9810A Mathematics ROM

1.4 Keyboard Configuration Files
The assignment of keys on the host-PC keyboard to key codes of the emulated machines
is controlled by a calculator specific configuration file. By that means user- or language-
specific keyboard customizations can be achieved.
The name of the configuration file is

<Machine>-keyb.cfg
where <Machine> is the name of the machine configuration file. E.g. if the machine config-
uration file is MyHP9830A.cfg then the corresponding keyboard configuration file is
MyHP9830A-keyb.cfg.
The keyboard configuration file is a plain text file and contains one key code assignment
per line. Each assignment consists of the octal calculator key code, the decimal PC key
code, and an optional modifier key, each separated by space or tabulator.
The octal key code may be found in the operation manual of the individual calculator or
can be determined using the HP9800 Console key-log function (see appendix C.3).
The host-PC key code may be found elsewhere or also using the key-log function as de-
scribed above.
The modifier key defines one to three PC-keys which have to be pressed simultaneously
with the function key. The possible modifier keys are

● S = Shift
● A = Alt
● C = Control

Example: If the calculator key code is 77 (octal) and on the PC the keys Alt+Sift+X have to
be pressed to activate that key, the configuration line is:

77 88 AS
The configuration file may contain comment lines, which are not evaluated. Comment lines
have to start with a semicolon. Comments can also be used as last part of a assignment
line.
Example:
; This is a comment line

To ease the creation of keyboard configurations for the HP9830A, most alphanumeric keys
are inherited from the host PC. PC keys which are not listed in the configuration file are
treated as follows:
If the corresponding octal scan code is between 40 and 172 (inclusive) it is used as the
calculator key code. For compatibility with the HP9830A lower case characters are conver-
ted to upper case and upper case characters are or-ed with the shift-bit (octal 200).
If the scan code is outside this range, the key is ignored. So normally only function keys
and language specific keys have to be configured.

1.4.1 Display of the Keyboard Mapping
The current mapping of PC keys to calculator keys can be temporary displayed as a key-

12

board overlay by pressing Ctrl+K. For each calculator key the configured PC key combina-
tion is displayed beneath that key. If no special PC key is assigned, the calculator key
code converted to the corresponding ASCII character is displayed. Modifiers Alt, Ctrl, and
Shift are displayed as A+, C+, and S+ respectively, followed by the normal key.
In order to have a readable representation of special PC keys like function or cursor keys
there is an editable file
keynames.cfg
which contains the translation of JAVA key codes to display character strings.

The configuration file of the distribution looks as follows:
8 Bsp
10 Ent
19 Pau
27 Esc
32 Spc
33 PgUp
34 PgDn
35 End
36 Home
37 Left
38 Up
39 Right
40 Dn
96 K0
97 K1
98 K2
99 K3
100 K4
101 K5
102 K6
103 K7
104 K8
105 K9
106 K*
107 K+
109 K-
110 K.
111 K/
112 F1
113 F2
114 F3
115 F4
116 F5
117 F6
118 F7
119 F8
120 F9
121 F10

13

122 F11
123 F12
127 Del
153 <
155 Ins
520 #
521 ~

The key map also shows the 'hot areas' for each calculator key in which it can be actuated
by a mouse-click.

14

HP9830A with key map showing'hot areas' and PC key combinations

1.4.2 Predefined Keys
Some functions of the emulator itself may be controlled by the PC keyboard. The key
codes used for these functions are hard coded and can not be changed or used in key-
board configuration files. These functions and corresponding keys are as follows.

PC keys Function
Ctrl + D Opens the emulator Console.
Ctrl + F Toggles the sound output of the calculator cooling fan.
Ctrl + K Toggles display of the PC to HP calculator key map.
Alt + Ctrl + R Resets the calculator to power-on condition.
Ctrl + S Toggles the complete sound output of the calculator on and off.
Ctrl + T Starts and stops the CPU instruction execution timer.
Ctrl + Page↑ Moves the paper of the built-in printer one page up.
Ctrl + Page↓ Moves the paper of the built-in printer one page up.
Ctrl + Del Clears the output of the built-in printer.
Ctrl + Home Advances the paper of the built-in printer.

1.5 General Limitations
When executed on a modern PC hardware (some GHz) the emulated calculator is much
faster than the original machine (typically 30 times). Programs which use loops to generate
time delays may not run correctly. For internal timing of the emulator the JAVA class
Thread is used. On LINUX platforms the method Thread.sleep(milliseconds) is inaccurate,
esp. for small values of 1-3 ms. This may lead to slower display and printer output and oth-
er timing deviations.
Some emulated peripheral devices are timing-critical because they deliver a continuous
data stream to the calculator. Amongst these devices are the built-in magnetic card reader,
the HP9860A marked card reader, and the HP9865A cassette memory. The emulator ac-
counts for the behaviour of the real devices where asynchronous mechanical transports
determine the rate of incoming data. If for any reason the calculator is not able to receive
data at this given rate, information maybe lost and the data unusable. With the HP9865A
this may result in check-sum errors. So care should be taken that the host PC is not too
busy with other programs when using the peripheral devices mentioned.
From release 1.41 there is an automatic timing calibration running at startup of the emulat-
or. During this calibration the critical timing constants are “measured” and corrected if ne-
cessary. As a result the timing of peripheral devices should be more accurate and platform
independent.
On some platforms, esp. Linux-Systems, the sound output maybe distorted or may exhibit
some crackling. The is due to characteristics of the Java sound engine and some sound
cards. If this is perturbing the sound may be completely switched off using the key combin-
ation Ctrl+S.

15

2. Implemented Machines
The HP9800 emulator is able to run with different personalities which resemble the indi-
vidual hardware features of the real models. In this release the personalities of the
HP9810A, HP9820A, HP9821A, and HP9830A are implemented. The HP9810A is avail-
able in two versions: version one with single-digit LED display modules, and version two
with five-digit LED modules. Which calculator personality is used by emulator is defined in
the Model item of the configuration file. The configuration file is given the the emulator as
start parameter.

2.1 HP9830A Personality

2.1.1 Implemented Features

2.1.1.1 ROM
For the HP9830A the following system ROM blocks must be defined in the configuration
file:
HP9830A_System1 to HP9830A_System9

The following add-on ROMs are optional:
HP11270B Matrix Operations
HP11271B Plotter Control
HP11272B Extended I/O
HP11273B Mass Memory
HP11274B String Variables

16

HP11277B Terminal I
HP11278B Batch Basic
HP11279B Advanced Programming I
HP11283B Printer Control
HP11289B Advanced Programming II
Infotek Fast Basic I
Infotek Fast Basic II
Infotek Fast Basic III

2.1.1.2 RWM
The minimal RWM blocks which have to be configured are:
HP9830A_System
HP9830A_User (3840 words)

The following memory expansions are optional:
HP11275F (additional 4096 words)
HP11276F (additional 8192 words)

2.1.1.3 I/O Devices
The following internal devices are implemented:
Display
Sound (for output of BEEP command and error messages)
Keyboard (select code 13)
Tape drive (select code 10)

The following external devices can be configured:
HP9860A Marked Card Reader (no select code)
HP9861A Typewriter (select code 1 to 14)
HP9862A Plotter (fixed select code 14)
HP9865A Cassette Tape Drive (select code 1 to 9)
HP9866A Thermoelectric Line Printer (fixed select code 15)
HP9880B Mass Memory (fixed select code 11)
HP11202A Interface for file I/O on host PC (select code 1 to 9)

2.1.2 Limitations
When executed on a modern PC hardware (some GHz) the emulated HP9830A is much
faster than the original machine (typically 30 times). Programs which use loops to generate
time delays may not run correctly. Instead the WAIT instruction generates a correct delay
in milliseconds. See also General Limitations (chapter 1.5).
Special attention should be payed when a HP9880A/B Mass Memory is connected to the
HP9830A. Refer to chapter 3.6.4 for futher informations.

17

2.1.3 User Interfaces

2.1.3.1 Display
The original 5*7 dot matrix LED display is simulated. In the original machine the display is
multiplexed completely by the CPU. The calculator controls the display by the signal DEN
(Display Enable). When the calculator is busy, DEN is false and the display is dark.
In the emulator the display multiplexing would lead to flickering and high load of the host
PCs CPU. Therefore the display content is buffered and refreshed only if it has changed.
When DEN is false for a period of more than 200ms (which means that the calculator is
busy with other things) the emulated display will get dark.
The output timing is nearly like the original, visible delays in display output are intended.

2.1.3.2 Keyboard
The representation of the HP9830 keyboard on the host PC keyboard can be configured.
The configuration is stored in the text file HP9830A-keyb.cfg and can be changed with any
text editor. More on keyboard configuration can be found in chapter 1.4.
Besides the predefined emulator keyboard functions (see chapter 1.4.2) the distributed
HP9830A keyboard configuration is as follows.

Main keyboard, unshifted:

PC Key HP9830 Key
A - Z A - Z
0 - 9 0 - 9
space space
symbols (+-*, ...) symbols (+-*, ...)
backspace END OF LINE
return EXECUTE
insert INSERT
delete CLEAR
home RESULT
end END
page ↑ ↑ (power-of operator)
pause STOP
← ↑ → ↓ DISPLAY ← ↑ → ↓
F1-F9 f1-f9
F10 f0

Main keyboard, shifted:

18

PC Key HP9830 Key
A - Z a - z (displayed as A -

Z)
0 =
1 !
2 "
3
4 $
5 %
6 &
7 /
8 (
9)
symbols (+-*, ...) symbols (+-*, ...)
del DELETE LINE
F1-F9 f11-f19
F10 f10

Numpad keys:

PC Key HP9830 Key
0 - 9 0 - 9
+ - * / + - * /
enter EXECUTE

Alt + Key:
PC Key HP9830 Key
← BACK
→ FORWARD
↓ STEP
↑ CONT
return RUN
backspace RECALL
del SCRATCH
A AUTO#
D STD
F FLOAT

19

PC Key HP9830 Key
I LIST
L LOAD
N NORMAL
P PRT ALL
S STORE
T TRACE
X FIXED

2.1.4 Internal Devices

2.1.4.1 Tape Drive
The internal tape drive is functional identical to the HP9865A external tape drive, so the
emulator uses the same Java classes for internal and external drives. See the description
of the HP9865A (chapter 3.4) for more detailed information.
The original tape cassettes are emulated by files in the host file system. To prepare a new
host tape-file one needs a 'blank' tape. A original blank tape is not really empty, but con-
tains at least a Begin-Of-File marker (hex 3C + control bit). Without that BOF no new files
can be MARKed on that tape. In the HP9800E distribution there is file named 'blank.tape'
which should be kept as origin for new tapes. To create new tape make a copy of the file
'blank.tape' and give it a name of your choice. For convention it should have the
extension .tape.
To load a tape in the HP9830A emulation, mouse-click on the 'OPEN' door lever. The cas-
sette door will be opened and a file selector dialog is displayed in which you can select
your new empty tape. If you dismiss this dialog with the Cancel button, the cassette door
stays open. After successful selection of a tape the door will be closed again and a loaded
cassette is visible in the door window.
Now the tape is ready for the usual HP9830 tape commands, like MARK, STORE, and
LOAD. See the original HP9830A manual for reference.

20

2.2 HP9820A Personality

2.2.1 Implemented Features

2.2.1.1 ROM
For the HP9820A the following system ROM blocks must be defined in the configuration
file:
HP9820A_System1 to HP9820A_System6

The following add-on ROMs are optional:
HP11221A Mathematics
HP11222A User Defined Functions
HP11223A Cassette Memory / Special Programs
HP11224A Peripheral Control I

2.2.1.2 RWM
The minimal RWM blocks which have to be configured are:
HP9820A_System
HP9820A_User (768 words = 192 registers)

The following memory expansions are optional:
HP11228A (additional 1024 words = 256 registers)

21

2.2.1.3 I/O Devices
The following internal devices are implemented:
Display
Magnetic Card Reader
Printer
Keyboard (select code 13)

The following external devices can be configured:
HP9860A Marked Card Reader (no select code)
HP9861A Typewriter (fixed select code 15)
HP9862A Plotter (fixed select code 14)
HP9865A Cassette Tape Drive (select code 1 to 9)
HP9866A Thermoelectric Line Printer (fixed select code 15)
HP11202A Interface for file I/O on host PC (select code 1 to 9)

2.2.2 Limitations
When executed on a modern PC hardware (some GHz) the emulated HP9820 is much
faster than the original machine (typically 30 times). Programs which use loops to generate
time delays may not run correctly. See also general limitations (chapter 1.5).

2.2.3 User Interfaces

2.2.3.1 Display
The original 5*7 dot matrix LED display is simulated. In the original machine the display is
multiplexed completely by the CPU. The calculator controls the display by the signal DEN
(Display Enable). When the calculator is busy, DEN is false and the display is dark.
In the emulator the display multiplexing would lead to flickering and high load of the host
PCs CPU. Therefore the display content is buffered and refreshed only if it has changed.
When DEN is false for a period of more than 200ms (which means that the calculator is
busy with other things) the emulated display will get dark.

2.2.3.2 Keyboard
The representation of the HP9820 keyboard on the host PC keyboard can be configured.
The configuration is stored in the text file HP9820A-keyb.cfg and can be changed with any
text editor. More on keyboard configuration can be found in chapter 1.4.
Besides the predefined emulator keyboard functions (see chapter 1.4.2) the distributed
HP9820A keyboard configuration is as follows.

22

Main keyboard:

PC Key HP9820 Key

A - C A - C
D - W D - W (half keys)
X - Z X - Z
0 - 9 0 - 9
$ % & ' ? $ % & ' ?
, ,
; ;
~ √x
≠
= =
< ≤
> >
^ GOTO SUB
backspace STORE
space SPACE

Numpad keys:

PC Key HP9820 Key
0 - 9 0 - 9
+ - * / + - * /
. .
enter EXECUTE

Special and Function Keys:

PC Key HP9820 Key
insert INSERT
delete DELETE
end END
backspace STORE
pause STOP
← BACK
→ FORWARD

23

PC Key HP9820 Key
F1 NORMAL
F2 TRACE
F3 FIXED
F4 FLOAT
F5 ENTER
F6 DISPLAY
F7 PRINT
F8 SPACE
F9 LIST
F10 LOAD
F11 RECORD
F12

Alt + Key:

PC Key HP9820 Key
C SET / CLEAR FLAG N
E END
F FLAG N
G GO TO
R R()
T RETURN
U GO TO SUB
X ENTER EXP
< ≠
→ →
return RUN PROGRAM
backspace RECALL
del CLEAR

Alt + Shift + Key:

PC Key HP9820 Key
del ERASE

24

2.2.4 Internal Devices

2.2.4.1 Printer
The HP9820A was equipped with a 16 character wide thermo electric printer. Use of the
printer is identical to the original. The printer output is graphically emulated and the graph-
ics are internally buffered. The 'paper' advances to the top of the displayed window area.
Since the HP9820 generates the output as printer dots, not as characters, it is impossible
to store it in a text file.
The output can be scrolled back and forth with the PC keys Ctrl+Page↑ and Ctrl+Page↓.
The complete output can be erased by Ctrl+Clear.
The PAPER advance key can be operated by mouse click or Ctrl+Home keys. Click on the
PAPER key and hold the mouse button down to achieve a continous paper feed.

2.2.4.2 Magnetic Card Reader
Like the HP9865A the internal card reader emulates the original magnetic media by files in
the host file system. To prepare a new host card-file one needs a 'blank' card. This can be
any simple empty (0 byte length) file, e.g. created with a text editor. Give the file a name of
your choice. For convention it should have the extension .mcard.
To write a program in HP9820 main memory to a magnetic card simply click on the RE-
CORD key. Then the display goes out and the sound of the transport motor is audible. A
file selector dialog is displayed in which you can select your card file. If you dismiss this
dialog with the Cancel button, the motor keeps running and has to be stopped with the
STOP key. After successful selection of a card the program will be stored in the card file.
As in the original every previously stored contents will be overwritten. Finally the motor
sound stops.
Unlike the original a program of any size can be stored on one single card.
Reading of a program stored in a magnetic card is straight forward. Also writing and read-
ing of data registers. See the original HP9820A manual for reference.

25

2.3 HP9821A Personality
The HP9821A is an advancement of the HP9820A and is identical to it in the most func-
tions. The main differences are:

● A cassette tape drive instead of a magnetic card reader
● Extended memory (up to 1400 registers)
● Different design of the chassis

Most user programs for the HP9820A will also run on the HP9821A.

2.3.1 Implemented Features

2.3.1.1 ROM
For the HP9821A the following system ROM blocks must be defined in the configuration
file:
HP9821A_System1 to HP9821A_System6

The following add-on ROMs are optional:
HP11221A Mathematics
HP11222A User Defined Functions
HP11224A Peripheral Control I

The HP11223A Cassette Memory / Special Programs ROM can not be used with the
HP9821A since the functionality is already contained in the system ROM.

2.3.1.2 RWM
The minimal RWM blocks which have to be configured are:
HP9821A_System
HP9821A_User (1792 words = 448 registers)

Up to two of the following memory expansions are optional:
HP11255A (additional 2048 words = 512 registers)

2.3.1.3 I/O Devices
The following internal devices are implemented:
Display
Printer
Keyboard (select code 13)
Cassette Tape Drive (select code 10)

The following external devices can be configured:
HP9860A Marked Card Reader (no select code)
HP9861A Typewriter (fixed select code 15)
HP9862A Plotter (fixed select code 14)

26

HP9865A Cassette Tape Drive (select code 1 to 9)
HP9866A Thermoelectric Line Printer (fixed select code 15)
HP11202A Interface for file I/O on host PC (select code 1 to 9)

2.3.2 Limitations
When executed on a modern PC hardware (some GHz) the emulated HP9821 is much
faster than the original machine (typically 30 times). Programs which use loops to generate
time delays may not run correctly. See also general limitations (chapter 1.5).
Note: Due to technical problems the HP9821A in this release uses the HP9820A system
ROMs. So the functionality is different from a real HP9821A. The internal tape drive may
be used but the HP11223A Cassette Memory ROM has to be installed. The tape drive is
configured with select code 5 instead of 10 a in the original HP9821.

2.3.3 User Interfaces

2.3.3.1 Display
The original 5*7 dot matrix LED display is simulated. In the original machine the display is
multiplexed completely by the CPU. The calculator controls the display by the signal DEN
(Display Enable). When the calculator is busy, DEN is false and the display is dark.
In the emulator the display multiplexing would lead to flickering and high load of the host
PCs CPU. Therefore the display content is buffered and refreshed only if it has changed.
When DEN is false for a period of more than 200ms (which means that the calculator is
busy with other things) the emulated display will get dark.

2.3.3.2 Keyboard
The representation of the HP9821 keyboard on the host PC keyboard can be configured.
The configuration is stored in the text file HP9821A-keyb.cfg and can be changed with any
text editor. More on keyboard configuration can be found in chapter 1.4.
The distributed PC keyboard configuration is the same as for the HP9820A.

2.3.4 Internal Devices

2.3.4.1 Printer
The HP9821A was equipped with a 16 character wide thermo electric printer. Use of the
printer is identical to the original. The printer output is graphically emulated and the graph-
ics are internally buffered. The 'paper' advances to the top of the displayed window area.
Since the HP9821A generates the output as printer dots, not as characters, it is impossible
to store it in a text file.
The output can be scrolled back and forth with the PC keys Ctrl+Page↑ and Ctrl+Page↓.
The complete output can be erased by Ctrl+Clear.
The PAPER advance key can be operated by mouse click or Ctrl+Home keys. Click on the
PAPER key and hold the mouse button down to achieve a continous paper feed.

27

2.3.4.2 Tape Drive
The internal tape drive is functional identical to the HP9865A external tape drive, so the
emulator uses the same Java classes for internal and external drives. See the description
of the HP9865A (chapter 3.4) for more detailed information.
The original tape cassettes are emulated by files in the host file system. To prepare a new
host tape-file one needs a 'blank' tape. A original blank tape is not really empty, but con-
tains at least a Begin-Of-File marker (hex 3C + control bit). Without that BOF no new files
can be MARKed on that tape. In the HP9800E distribution there is file named 'blank.tape'
which should be kept as origin for new tapes. To create new tape make a copy of the file
'blank.tape' and give it a name of your choice. For convention it should have the
extension .tape.
To load a tape in the HP9821A emulation, mouse-click on the 'OPEN' key. A file selector
dialog is displayed in which you can select your new empty tape. After successful selection
of a tape a loaded cassette is visible in the door window.
Now the tape is ready for the usual HP9821A tape commands, like MRK, STF, and LDF.
See the original HP9821A manual for reference.

28

2.4 HP9810A Personality

2.4.1 Implemented Features
The HP9810 comes in two slightly different versions. The first version was produced
between 1971 and (perhaps) 1973 and used a single LED display module for each digit.
The second version used the same 5-digit modules (HP1990-7405 or HP5082-7405) as
the classic pocket calculators, like the HP-35. The digits of this display are significantly
smaller then those of the first version. Also the second version has a bug fix in the system
ROM affecting the square root function1.

1 In the first version the square root of arguments near to squares of integers, e.g. √36.0000000005,
causes an arbitrary change of the exponent of the Z-register.

29

HP9810A version 1 real display HP9810A version 1 emulator display

Which version is emulated is controlled by the configuration file (chapter 1.1). To emulate
the earlier version the first configuration item has to be
Model HP9810A 1

To emulate the second version the first configuration item has to be
Model HP9810A 2

2.4.1.1 ROM
For the HP9810A the following system ROM blocks must be defined in the configuration
file:
HP9810A_System1 to HP9810A_System3

Alternatively the never system ROMs of the second version can be used:
HP9810A2_System1 to HP9810A2_System3

The following add-on ROMs are optional:
HP11210A Mathematics
HP11211A Printer Alpha
HP11213A User Definable Functions
HP11214A Statistics
HP11215A Plotter
HP11252A Peripheral Control II
HP11261A Plotter / Printer Alpha Combo
HP11262A Peripheral Control / Cassette Memory Combo
HP11266A Peripheral Control / Printer Alpha Combo
HP11267A Typewriter / Cassette Memory Combo

Note 1: The Printer Alpha ROM (HP11211A) and all combo ROMs with this can only be
used in ROM slot 3. Use in another slot will lead to erratic output of the printer.
Note 2: The ROMs which require the left block of the so called half-keys and a correspond-
ing keyboard overlay will work in ROM slot 1 only.

2.4.1.2 RWM
The minimal RWM blocks which have to be configured are:
HP9810A_Data (109 registers)
HP9810A_Program (500 program steps)

30

HP9810A version 2 real display HP9810A version 2 emulator display

The following memory expansions are optional:
HP11217A (512 additional program steps)
HP11218A (1024 additional program steps)

2.4.1.3 I/O Devices
The following internal devices are implemented:
Display
Magnetic Card Reader
Printer
Keyboard

The following external devices can be configured:
HP9860A Marked Card Reader (no select code)
HP9861A Typewriter (select code 15)
HP9862A Plotter (fixed select code 14)
HP9865A Cassette Tape Drive (select code 1 to 9)
HP9866A Thermal Line Printer (select code 15)
HP11202A Interface for file I/O on host PC (select code 1 to 9)

2.4.2 Limitations
When executed on a modern PC hardware (some GHz) the emulated HP9810 is much
faster than the original machine (typically 30 times). Programs which use loops to
generate time delays may not run correctly. See also general limitations (chapter 1.5).

2.4.3 User Interfaces

2.4.3.1 Display
The original 7 segment LED display is simulated. There are two different versions imple-
mented: the older version 1 uses single digit display modules, the newer version 2 5-digit
modules. In the original machine the display is multiplexed completely by the CPU. The
calculator controls the display by the signal DEN (Display Enable). When the calculator is
busy, DEN is false and the display is dark.
In the emulator the display multiplexing would lead to flickering and high load of the host
PCs CPU. Therefore the display content is buffered and refreshed only if it has changed.
When DEN is false for a period of more than 200ms (which means that the calculator is
busy with other things) the emulated display will get dark.

2.4.3.2 Keyboard
The representation of the HP9810 keyboard on the host PC keyboard can be configured.
The configuration is stored in the text file HP9810A-keyb.cfg and can be changed with any
text editor. More on keyboard configuration can be found in chapter 1.4.
Besides the predefined emulator keyboard functions (see chapter 1.4.2) the distributed
HP9810A keyboard configuration is as follows.

31

Main keyboard:

PC Key HP9810 Key

A - O A - O (half keys)
P π
Q b
R a
S y→()
T x→()
U 1/x
V int x
W INDIRECT
X y←

→()
Y x←()
Z x2

0 - 9 0 - 9
- CHG SIGN
< IF x<y
> IF x>y
= IF x=y
ENTER EXP
~ √x
^ SUB/RETURN
backspace CLEAR x
return CONTINUE

Numpad keys:

PC Key HP9810 Key
0 - 9 0 - 9
+ - * / + - * /
enter CONTINUE

32

Special and Function Keys:

PC Key HP9810 Key
del CLEAR
page ↑ ROLL↑
page ↓ x←

→y
pause STOP
↑ ↑
↓ ↓
← BACK STEP
→ STEP PRGM
F5 FLOAT
F6 FIX
F7 RUN
F8 PRGM
F9 KEY LOG
F10 LIST
F11 LOAD
F12 RECORD

Alt + Key:

PC Key HP9810 Key
A a
B b
E END
F FORMAT
G GOTO
I IF FLAG
L LABEL
P PRINT
R SUB/RETURN
S SET FLAG
U PAUSE
X x→()
Y y→()

33

2.4.4 Internal Devices

2.4.4.1 Printer
For the HP9810A the thermo electric printer was optional (Option 004). The emulated
HP9810A is equipped with this printer. Use of the printer is identical to the original. The
printer output is graphically emulated and the graphics are internally buffered. The 'paper'
advances to the top of the displayed window area. Since the 9810 generates the output as
printer dots, not as characters, it is impossible to store it in a text file.
The output can be scrolled back and forth with the PC keys Ctrl+Page↑ and Ctrl+↓. The
complete output can be erased by Ctrl+Clear.
The PAPER advance key can be operated by mouse click or Ctrl+Home keys. Click on the
PAPER key and hold the mouse button down to achieve a continous paper feed.

2.4.4.2 Magnetic Card Reader
Like the HP9865A the internal card reader emulates the original magnetic media by files in
the host file system. To prepare a new host card-file one needs a 'blank' card. This can be
any simple empty (0 byte length) file, e.g. created with a text editor. Give the file a name of
your choice. For convention it should have the extension .mcard.
To write a program in the 9810 memory to a magnetic card simply click on the RECORD
key. Then the LED 'INSERT CARD' lights and the sound of the transport motor is audible.
A file selector dialog is displayed in which you can select your card file. If you dismiss this
dialog with the Cancel button, the motor keeps running and has to be stopped with the
STOP key. After successful selection of a card the program will be stored in the card file.
As in the original every previously stored contents will be overwritten. Finally the 'INSERT
CARD' LED goes out and the motor sound stops.
Unlike the original a program of any size can be stored on one single card.
Reading of a program stored in a magnetic card is straight forward. Also writing and read-
ing of data registers. See the original HP9810A manual for reference.

34

HP9810A sample printer output

2.4.5 Notes on use of the HP9865A tape drive
At the moment of writing of this manual no original manual for the Cassette Memory ROM
was available. So the functionality of this ROM had to be scrutinized experimental. The fol-
lowing functions where found out.
The select code [SC] is optional and may be omitted if the HP9865A is at standard select
code 5. SC may be any numeric key from 1 to 9 or . (decimal). If . is given, the select code
is variable defined by the contents of the highest register (108). This register must contain
a value between 1 and 9. If the given select code doesn't exits, the STATUS is lighted.

Store program to tape file

Register X Y Z
Input values Start address

Press FORMAT 5 [SC] x2

Output values
Notes Program is stored from start address in X to next END

Store secure program to tape file

Register X Y Z
Input values Start address

Press FORMAT 5 [SC] 1/x
Output values

Notes Program is stored from start address in X to next END

Store data registers to tape file

Register X Y Z
Input values Start register Number of registers

Press FORMAT 5 [SC] x→()
Output values

Notes Beginning from value of x a number of y registers is stored

35

Load data registers from tape file

Register X Y Z
Input values Start register Number of registers

Press FORMAT 5 [SC] x←()
Output values Number of reg.

loaded
Notes All registers in the file are loaded into calculator registers,

beginning from value of x. Y has to be smaller or equal to the
number of registers actually contained in the file.

Position to previous file on tape

Register X Y Z
Input values

Press FORMAT 5 [SC] √x
Output values

Notes The file pointer is set to the beginning of the previous file.

Position to next file on tape

Register X Y Z
Input values

Press FORMAT 5 [SC] CHG SIGN
Output values

Notes The file pointer is set to the beginning of the previous file.

Identify file

Register X Y Z
Input values

Press FORMAT 5 [SC] ENTER EXP
Output values File number

Notes The file number of the current file is loaded into X.

36

Find file

Register X Y Z
Input values File number

Press FORMAT 5 [SC] CLEAR x
Output values Absolute file size Current file size File type

Notes The tape is positioned to the file number in X and the size and type
of the file found are loaded into the registers.

Mark files

Register X Y Z
Input values Number of files Number of registers

Press FORMAT 5 [SC] SET FLAG SET FLAG
Output values

Notes Beginning with the current file position X files with as size of Y
registers each are marked on tape. Note that SET_FLAG has to be
pressed twice.

Merge program

Register X Y Z
Input values

Press FORMAT 5 [SC] CONTINUE
Output values

Notes The content of the current file is loaded into the program memory,
beginning from current program address. After that the program is
executed from this address. If the program doesn't fit in memory,
STATUS is lighted.

Load program

Register X Y Z
Input values Start address

Press FORMAT 5 [SC] SUB/RETURN
Output values

Notes The content of the current file is loaded into the program memory,
beginning from start address in X. If the relocated program doesn't

37

Load program

fit in memory, STATUS is lighted.

38

3. External Devices

3.1 HP9860A Marked Card Reader

3.1.1 General Information
The HP9860A Marked Card Reader is an input device for programs and data. In fact it is a
keyboard-like device which reads octal key codes from optical markings on a paper card
and sends them to the calculator (using interrupts). For the original device there where
cards with 30 and 50 lines (key codes) available, so one needed many cards to store a
long program. The codes had to be marked by hand with a pencil.
In HP9800E the cards are emulated by a single file in the host PC file system. The card-
file has to be written by hand using a simple text editor. The HP9860A can be used in con-
junction with all calculators models. With the HP9810A and HP9820A the key codes have
to be entered as octal characters, one key code per text line. The first line of the card file
has to be 'OCT', e.g.
OCT
44
01
00
00
46

The octal key codes can be found in the original calculator manuals. For convention the
octal card files should have the extension .oct.
In addition to the normal calculator key codes there is a pseudo code 200 (octal) for the
Skip marker. On the original cards there was a special skip-column which caused the
whole character to be ignored (skipped). This feature could be used to insert a pause in
the reading process to allow for completion of somewhat lengthy operations (like STORE
on HP9820). This feature is also available on the emulated HP9860A with one difference:
the pseudo code 200 creates a wait time of 300ms instead of 30ms like in the original.
When skip is combined with the key code 177 (octal) the pseudo key code 377 may be
used as end-of-file marker. As on the original all codes behind skip+177 are ignored.
For the HP9830 key codes may also be octal coded but the emulated 9860 has a special
'convenience mode' which accepts BASIC programs stored as normal ASCII text. Such a
program file has to begin with the first line 'BAS', e.g.
BAS
10 FOR I=1 TO 10
20 DISP I
30 NEXT I
40 END

For convention the card files containing BASIC programs should have the extension .bas.

3.1.1.1 Configuration
The HP9860A has no specific select code and the configuration item is:

39

DEV HP9860A

3.1.2 Usage of the HP9860A
In HP9800E the marked card reader has its own window and runs in a parallel program
thread.
To read a card-file into the calculator bring the HP9860A to the foreground and mouse-
click on the card input slot (the silver metallic area below the type label). Alternatively the
Return or Enter key on the host PC may be pressed. A file selector dialog is displayed in
which you can select the prepared card file. After successful selection of a file a marked
card is displayed in the reader output area and the transport motor sound is audible. After
the complete reading of the card-file the motor sound stops and the marked card is re-
moved from the display window. The reading process may be stopped at any time by
mouse-click on the marked card in the output area or by pressing Pause on the host PC
keyboard.
Note: Pressing STOP on the calculator doesn't affect the reader operation but may lead to
loss of data.

3.1.3 Reading of HP9810A programs
When reading programs into the HP9810A one has to change to PRGM mode before
reading the card file. Alternatively one can store the mode switch in the beginning of the
card file, e.g.
OCT
107
46
106

This sequence executes RUN, END, PRGM before reading the program.

3.1.4 Reading of HP9820/21A programs
HP9820A programs have to be octal coded. The octal key codes may be found in the Ap-
pendix II of the original HP9820A manual. To avoid loss of characters each STORE com-
mand (code 002) has to followed by one or more Skips (code 200) to give the calculator
time to execute the STORE.

3.1.5 Reading of HP9830A programs
HP9830A programs can be BASIC files coded in ASCII. The emulated HP9860A automat-
ically inserts a 300ms pause after each program line to allow for execution of the END OF
LINE key.

40

3.2 HP9861A Output Typewriter

3.2.1 General Information
The original HP9861A was a ASCII text impact printer based on a Facit 3841 electric type-
writer. The maximum line width was 162 characters. For use with the HP9810A the Type-
writer or Peripheral Control ROM is necessary. The Peripheral Control ROM is also re-
quired for use with the HP9820/21A.

3.2.1.1 Configuration
In the configuration file the select code has to be set to an unused value between 1 and
15. The standard value which is assumed in the HP9810A and HP9820A ROMs is 15:
DEV HP9861A 15
For use with the HP9810A or HP9820A an additional Typewriter or Peripheral Control
ROM is necessary and has to be listed in the configuration file.

41

HP9861A output of HP9830A printer test program. Note the red ribbon color below LINE 3.

3.2.2 Usage of the HP9861A
The typewriter is controlled by the HP9810A using the FORMAT key and by the
HP9820/21A using the TYPE key. Refer to the original manuals of the Typewriter and Peri-
pheral Control ROMs for further informations.
On the HP9830A the typewriter is controlled by the WRITE command. Also the PRINT #
and LIST # commands with the proper select code may be used.
The HP9861A uses its own window for output. For text output the JAVA Monospaced font
is used, so some characters may look different from the original. Red and black ribbon col-
ors are supported as well as backspace / overtype and tabulator functions The output is
automatically scrolled line by line in the window and is internally buffered. The window may
be resized manually.
The buffered output maybe controlled by the following PC keys:

PC key Function
page ↑ Scroll output one window page up
page ↓ Scroll output one window page down
home Position to first (top) window page
end Position to last window page
clear Delete complete output
S Toggle high-speed mode

The emulated HP9861A has a special high-speed output mode, where all artificial delays
are eliminated and the print output is generated at the maximum possible speed. In normal
output mode the delay resembles the timing of the real device. In high-speed mode the
printing sound is also disabled.
When the HP9861A window has the focus pressing the key S toggles between high-speed
and normal speed output. The high-speed mode is visualized in the window title bar.

42

3.3 HP9862A Plotter

3.3.1 General Information
The original HP9862A is a single pen flatbed x/y plotter with a resolution of 10000 by
10000 units. The emulation uses its own window for drawing. The graphic output is intern-
ally buffered so the window can be resized as desired and the graphics will be redrawn.

Different from the original the emulated HP9862A is able to change the pen color. This is
achieved by driving the pen position beyond the right border and 'grab' one of the 15 virtu-
al color pens. To change the pen color to N (1 <= N <= 15) output a plot command with x,y
coordinates of (10000,N), e.g. on the HP9830A:
SCALE 0,9999,0,9999
PLOT 10000,N.

The x-value of the right border of course depends on the scaling factor.
The colors are defined as follows:

43

HP9862A output of HP9810A plotter ROM exerciser program

1 black (default color)
2 green
3 red
4 blue
5 cyan
6 magenta
7 yellow
8 orange

9-15 black

3.3.1.1 Configuration
The select code of the HP9862A is fixed to 14 by the interface. In the configuration file the
select code has to be omitted:
DEV HP9862A

3.3.2 Usage of the HP9862A
In HP9800E the plotter has its own window and runs in a parallel program thread. Plot
commands can only be issued by the calculator. Every calculator needs a special add-on
ROM to control the plotter, these are delivered with the HP9800E emulator. See the appro-
priate original manual for further informations.
The buffered output maybe controlled by the following PC keys:

PC key Function
clear Delete complete output
S Toggle high-speed mode

The plot output may be cleared by the Clear key on the host PC. The output window will
be resized to the default size of 500x500.
The emulated HP9862A has a special high-speed output mode, where all artificial delays
are eliminated and the plot output is generated at the maximum possible speed. In normal
output mode the delay resembles the timing of the real device. In high-speed mode the
plotting sound is also disabled.
When the HP9862A window has the focus pressing the key S toggles between high-speed
and normal speed output. The high-speed mode is visualized in the window title bar.

44

3.4 HP9865A Cassette Memory

3.4.1 General Information
The original HP9865A used modified audio compact cassettes for storage of programs
and data. The original tape cassettes are emulated by files in the host PC file system. One
host tape-file can contain a unlimited number of HP calculator files. Like on a real tape
these files have to be created by the calculator using a MARK command. The movement
of the tape is emulated by a read/write position in the host file. When a tape is loaded in
the HP9865A the r/w position is 0 (zero). The position moves forward when reading or writ-
ing HP files on the tape. It moves backward when a REWIND or FIND is executed. When
the r/w position reaches the begin or end of the host file a 'clear leader' is signalled to the
calculator, which automatically stops the HP9865A. So the emulated devices behaves like
the real one.
To prepare a new host tape-file one needs a 'blank' tape. A original blank tape is not really
empty, but contains at least eight 0-value bytes and a Begin-Of-File marker (hex 3C + con-
trol bit). Without that initial BOF no new files can be MARKed on that tape. The zero value
bytes before BOF are necessary to prevent the drive running into a 'clear leader' position
during FIND or LOAD, which would result into an error message on the HP9830A. In the
HP9800E distribution there is file named 'blank.tape' which should be kept as source for
new tapes. To create new tape make a copy of the file 'blank.tape' and give it a name of
your choice. For convention it should have the extension .tape.

3.4.1.1 Configuration
In the configuration file the select code has to be set to an unused value between 1 and 9.
The standard value which is assumed in the HP9810A and HP9820A cassette memory
ROMs is 5:
DEV HP9865A 5

3.4.2 Usage of the HP9865A
In HP9800E the cassette memory has its own window and runs in a parallel program
thread.
To load a tape in the HP9865A bring the HP9865A to the foreground and mouse-click on
the 'OPEN' door lever. The cassette door will be opened and a file selector dialog is dis-
played in which you can select your new empty tape. After successful selection of a tape
the door will be closed again and a loaded cassette is visible in the door window.
The tape can only be read or written by commands issued on the calculator. On the
HP9830A these commands are build-in, on the HP9810A and HP9820A one needs a
'Cassette Memory' ROM block. See the original manuals for reference.
The only tape operation which can be directly executed by the HP9865A is rewind. Mouse-
click on the REWIND button places the read/write position to the beginning of the tape.
In the emulated drive the tape activity is not obvious since there are no moving reels in the
emulator and the only feedback is acoustical by the simulated motor sounds. Therefore a
tape activity indicator was added which shows if the tape drive is busy by using colored
chevrons.

45

The tape activity indicators have the following meaning:

> move tape forward slow

< move tape backward slow
>> move tape forward fast
<< move tape backward fast

The color coding is:

yellow search for control word (begin-of-file)
green read from tape
red write to tape

46

3.5 HP9866A Thermal Line Printer

3.5.1 General Information
The original HP9866A was a ASCII text printer which prints one complete line at a time on
thermo sensitive roll paper. It was the primary printer for the HP9830A which had no in-
ternal printer like the HP9810 and HP9820. The HP9830A had a build-in interface for dir-
ect connection of the printer. For use with other calculators a special interface card was
necessary.

3.5.1.1 Configuration
In the HP9800E the HP9866A can be used with the HP9830A as well as with the other cal-
culators. For use with the HP9830A the select code must be set to 15.
Typical configuration item:
DEV HP9866A 15

47

HP9866A output of HP9830A printer test program

For use with the HP9810A or HP9820A an additional Peripheral Control ROM is necessary
and has to be listed in the configuration file. The select code has to be set to an unused
value between 1 and 9.
Example:
DEV HP9866A 8

The HP9866A may also be controlled by the HP9810A Typewriter ROM. The select code
must then be set to 15.

3.5.2 Usage of the HP9866A
The HP9830A commands PRINT, LIST, and TLIST can be used like on the original ma-
chine.
The HP9866A uses its own window for output. For text output the JAVA Monospaced font
is used, so some characters may look different from the original. The output is automatic-
ally scrolled line by line in the window and is internally buffered. The window may be res-
ized manually.
The buffered output maybe controlled by the following PC keys:

PC key Function
page ↑ Scroll output one window page up
page ↓ Scroll output one window page down
home Position to first (top) window page
end Position to last window page
clear Delete complete output
S Toggle high-speed mode

The emulated HP9866A has a special high-speed output mode, where all artificial delays
are eliminated and the print output is generated at the maximum possible speed. In normal
output mode the delay resembles the timing of the real device. In high-speed mode the
printing sound is also disabled.
When the HP9866A window has the focus pressing the key S toggles between high-speed
and normal speed output. The high-speed mode is visualized in the window title bar.

48

3.6 HP9880A/B Mass Memory System

3.6.1 General Information
The original HP9880A/B was a storage system with fixed or removable magnetic discs
with a capacity of 2.5 Mbytes each. It comprised of a HP11273B interface, a HP11305A
disc controller unit and one or more HP9867A/B disc drives. Each HP11305A controller
was able to connect up to four disc units, either up to four HP9867A single platter or two
HP9867B dual platter drives. In the emulator both the HP9880A (with HP9867A drives)
and the HP9880B (with HP9867B drives) is available.
The HP9867A has a single removable disc, while the HP9867B has one fixed (lower) and
one removable (upper) disc. Each disc can be accessed by a unit number between 0 and
3. In the HP9867B the upper disc has the unit number 0 or 2, and the lower, fixed disc the
unit number 1 or 3.
The physical disc is emulated by a binary file in the host PC file system. Before it can be
used a new disc has to be initialized. The procedure is described below. Alternatively an
initialized empty disc may be used. In the HP9800E distribution there is file named
'empty.disc' which should be kept as source for new discs. To create new disc make a
copy of the file 'empty.disc' and give it a name of your choice. For convention it should
have the extension .disc.

3.6.1.1 Configuration
In the HP9800E the HP9880A/B can be used with the HP9830A only. The select code is
internally fixed to 11. In place of the select code the configuration file contains the number
of attached HP9867A drives (1 to 4) or HP9867B drives (1 or 2).
Typical configuration items:
DEV HP9880A 4
DEV HP9880B 2

For use with the HP9830A an additional Mass Memory ROM is necessary and has to be
listed in the configuration file. The ROM has to be placed in the uppermost slot in order to
be functional. The corresponding configuration item is:
ROM 036000 002000 HP11273B Slot1

The HP11273B interface connects the HP11305A controller to the calculator and contains
a 256-word cache memory which is mapped in the main memory at address 77000-77377.
This cache has also to be configured using the following item:
RWM 077000 000400 HP11273_Cache HP11305A

3.6.2 Usage of the HP9880A/B
In the emulator the HP9880 has a user interface showing the front panel of each HP9867
disc drive in its own window.
At startup each configured disc unit is loaded with a standard disc named
'HP9880-UNITn.disc'

49

where n is the unit number.
A disc can be exchanged by mouse-clicking on the 'LOAD' switch on the right side of the
HP9867. The 'DRIVE READY' lamp will go out and the 'DOOR UNLOCKED' lamp will be
lighted. Then a file selector dialog is displayed in which a new disc-file can be selected.
After successful selection of a disc the 'DRIVE READY' lamp will be lighted again and the
other lamp will go out. If the dialog is dismissed without selecting a disc-file the drive will
stay in the not-ready state and can not be operated until another disc is loaded.
The HP9867A/B drives have a write-protect mechanism which can be activated separately
for each disc. Mouse-click on the 'PROTECT U.D.' or 'PROTECT L.D.' area of the HP9867
front panel and the corresponding disc will be write protected. In the HP9867A only the up-
per disc is present and can be protected.
In the emulated drive the disc activity is not obvious, therefore a disc activity indicator was
added which shows which which disc record is currently accessed. The physical records
have numbers between 0 and 9743 (corresponding to 2 surfaces with 203 cylinders and
24 sectors each).
The disc activity indicators have the following meaning:

Unnnn HP9867B upper disc record nnnn

Lnnnn HP9867B lower disc record nnnn
nnnn HP9867A disc record nnnn

The color coding is:

yellow Record being initialized
green Record being read from disc
red Record being written to disc

The emulated HP9867A/B has a special high-speed output mode, where all artificial
delays are eliminated and the disc access is performed at the maximum possible speed. In
normal output mode the delay approximates the timing of the real device.
When the HP9867A/B window has the focus pressing the key S toggles between high-
speed and normal speed output. The high-speed mode is visualized in the window title
bar.

3.6.3 Initializing discs
Before a new disc can be used for data storage it has to be initialized (formatted). This can
be accomplished by a utility program provided on the HP9880 Systems Tape. This tape is
included in the HP9800E distribution as file
applications/HP9830/HP11273-60004 SYSTEMS TAPE.tape
The initialization procedure is described in the HP9880 operation manual and shortly out-
lined here. Load the systems tape into the HP9830 tape drive and execute
LOAD BIN 60
When the file is loaded execute

50

INITIALIZE
and follow the instructions printed on the HP9866A printer. When you are requested to set
the mode switch to INITIALIZE on the controller, simply ignore this and continue.

3.6.4 Note on Usage of the Infotek Fast Basic II ROM
The Infotek Fast Basic II ROM contained in the HP9800E distribution has a feature which
automatically executes the command
GET “↑”,10,10
when the HP9830 calculator is switched on. This command searches for a BASIC program
file named “↑” on disc unit 0. If present, this file is loaded and started from line 10.
If at startup of the HP9830 the disc unit 0 is not ready or not present, the calculator beeps
periodically and waits for unit 0 to become available. This can be abandoned pressing the
STOP key.
If the file “↑” is not present on the disc ERROR 94 is displayed. If the file is not executable
ERROR 98 occurs.
If the Infotek Fast Basic II ROM is not necessary and the above behavior is bothersome
the ROM should be removed from the HP9830A configuration file. The following con-
figured line should be deleted:
ROM 017000 001000 INFOTEK_FB2 Int0

51

3.7 HP11202A I/O Interface

3.7.1 General Information
The original HP11202A interface was a bidirectional 8 bit TTL interface. Like other peri-
pheral interfaces it was plugged into one of the four slots on the rear side of the calculator.
It could be connected by a cable to output devices like printers (e.g. HP9866A, HP9871A)
or input devices like a card reader (HP9869A).
For control of the HP11202A and devices connected to it by the calculator functions from
special add-on ROM blocks (Peripheral Control Block I or II for the HP9810A, HP9820A,
and Extended I/O Block for the HP9830A) had to be used. Some simple functions where
also implemented in the basic machines. The basic HP9830A was able to read programs
from a HP9869A (PTAPE#) or output to a connected printer (LIST#).

3.7.1.1 Configuration
In the configuration file the select code has to be set to an unused value between 1 and 9.
A standard value which is assumed for HP9869A paper tape reader and other devices is
1:
DEV HP11202A 1

Since release 1.31 the HP11202A can handle I/O data in different formats: as binary bytes
or number strings in an arbitrary radix, e.g. as decimal, octal or hexadecimal numbers. The
radix is configurable as an additional parameter.
DEV HP11202A 1 Bin
configures binary format. Data is input or output as binary bytes. This is also the default
format if the parameter is omitted.
DEV HP11202A 1 <n>
configures input and output as number string in radix n. Each value is separated by a
newline character. E.g.
DEV HP11202A 1 16
configures input and output as hexadecimal number string (e.g. 3F).

3.7.2 Usage of the HP11202A
There is no special user dialog for the HP11202A. Instead when one of the input or output
commands is executed for the first time with the interface select code, a file dialog box is
displayed. Then the location and name of an input or output file has to be entered. This file
will be used for the current and following input resp. output commands. There are two dif-
ferent files possible: one for input and another for output operations. So if both input and
output operations occur over the same interface, two file selector dialogs are displayed.
Once an output file is opened it will never be closed until the emulator is finished. Every
output over the interface is appended to that file.
When the end-of-file condition of an input file is met during an input operation, another file
selector box will be displayed. If this dialog is dismissed by Cancel or no file is selected, a
pause of 5 seconds is carried out. During this pause the input process can be cancelled by

52

pressing the calculator STOP key. After the 5 second pause the file dialog is displayed
again and the user gets a second chance.

3.7.3 Saving and Loading of HP9810A programs
Using the integrated Peripheral Control ROM HP9810A programs can be saved to a file in
the host PC and later reloaded without using slow magnetic cards. To save a program
press the following keys:
FORMAT 4 0 1 RECORD

To reload a saved program press:
FORMAT 3 0 1 GOTO

After the complete program is loaded the reading doesn't stop automatically but the file se-
lector is displayed again. Dismiss this dialog by pressing Cancel and press STOP on the
HP9810A emulation.

3.7.4 Saving and Loading of HP9830A programs
HP9830A programs can be saved to a host PC file using the LIST command:
LIST #1

The resulting text file may be opened by a text editor and printed.
To load a program from a text file enter:
PTAPE #1

After the complete program is loaded the reading doesn't stop automatically but the file se-
lector is displayed again. Dismiss this dialog by pressing Cancel and press STOP on the
HP9830 emulation.

53

4. Installation and Running
The emulator requires a JAVA runtime environment 1.5.0 or higher. The JAVA runtime
may be downloaded from http://java.sun.com/javase/downloads/index.jsp. The emulator
consists of a single JAR-archive which can be placed anywhere in the file system.
To run specific calculator a configuration file is needed (see chapter 1.1), which contains
informations about the calculator model, the memory, and attached peripheral devices.
The name of the configuration file is arbitrary.

Run the emulator by entering the command line

java -jar HP9800E.jar <configuration-file>

During startup of the emulator a copyright note and various messages about configured
components and devices are output to the command console. At the beginning a timing
calibration is performend to evaluate critical timing constants which may be influenced by
the host platform.
A typical console output looks like this:

HP9800 Emulator Release 1.41, Copyright (C) 2006-2009 Achim Buerger

HP9800E comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to
redistribute it under certain conditions.

HP9800 I/O bus loaded.
Timing calibration in progress done.
HP9800 I/O register at select code 1:0 loaded.
HP9800 CPU loaded.
Custom configuration file HP9810A.cfg loaded.
HP9810A_System1 ROM at 0-777, Block0 (SYSTEM1) loaded.
HP9810A_System2 ROM at 4000-5777, Block4 (SYSTEM2) loaded.
HP9810A_System3 ROM at 16000-16777, Block16 (SYSTEM3) loaded.
HP9810A_Data RWM at 1000-1777, Block1 initialized.
HP9810A_Program RWM at 12000-12777, Block12 initialized.
HP11217A RWM at 13000-13777, Block13 initialized.
HP11218A RWM at 14000-15777, Block14 initialized.
HP11210A ROM at 2000-3777, Slot1 (MATHEMATICS) loaded.
HP11262A ROM at 6000-7777, Slot2 (PERIPHERAL_CONTROL/CASSETTE_MEMORY) loaded.
HP11261A ROM at 10000-11777, Slot3 (PLOTTER/PRINTER_ALPHA) loaded.
HP9860A Marked Card Reader loaded.
HP9861A Printer at select code 1:15 loaded.
HP9862A Plotter at select code 1:14 loaded.
HP9865A Tape Drive at select code 1:5 loaded.
HP9866A Printer at select code 1:15 loaded.
HP11202A File-I/O at select code 1:1 loaded.
Default configuration file C:\Java\9800 Emulator/config/keynames.cfg loaded.
Default configuration file C:\Java\9800 Emulator/config/HP9810A-keyb.cfg loaded.
HP9800 Printer at select code 4:0 loaded.
HP9800 Magnetic Card Reader at select code 2:0 loaded.
HP9810 Display at select code 8:0 loaded.
HP9810 KeyLEDs at select code 16:0 loaded.
HP9810 Keyboard loaded.
HP9810 Mainframe loaded.

54

5. Known Issues

5.1 HP9830A
Writing and reading of files in the internal or external HP9865A tape device is timing critical
and may hang up on some machines. This due to timing and CPU load problems on the
host machine.

5.2 Peripheral Devices
The devices with critical timing and operation in background, like HP9865A and the intern-
al card reader, may not work properly on slow host machines. Symptoms are error mes-
sages, loss of data, and hangup of the emulated machine.

5.3 Java Issues
In the Java 6 runtime there is an issue with Microsoft DirectX output of graphics which may
lead to rather slow drawing or flickering of bitmaps. This is mainly visible with the output of
the LED display on the HP9820A. There is a workaround in deactivating the usage of Dir-
ect3D acceleration by the Java runtime. This is accomplished by adding the option -Dsun.-
java2d.d3d=false when starting the Java runtime.
This is already done in the startup CMD files for each calculator contained in the distribu-
tion. A typical Java call looks like this:
java -Dsun.java2d.d3d=false -jar HP9800E.jar HP9810A
You may try if this option has an effect on drawing speed on your particular host system.

55

6. The Project
The objectives of this project where to understand and preserve the firmware of the Hew-
lett-Packard series 9800 calculators and to create a fully functional real-time simulation of
the complete hardware.
Of course there where some legal concerns which had to be examined. As of April 2007 all
patents are long since expired and there are no registered trademarks affected except the
HP logo. The firmware ROMs, software tapes and magnetic cards don't carry any copy-
right notice. Also the contents of the most ROMs are disclosed as source code in the ap-
propriate patents. Nevertheless all HP firmware and software is still regarded as copy-
righted and used as is, without any changes.
The project began with acquisition of the ROM contents of the HP9810A and HP9820A by
means of a logic analyzer. The next step was programming a disassembler in Java to get
a deeper understanding of the 9800 CPU instructions. Furthermore by analyzing the disas-
sembled firmware it was possible to understand the I/O procedure and interrupt structure.
One more result was the ability to create my own assembler programs for the 9800 CPU
and run them on the real hardware. I discovered undocumented features in the 9810 Peri-
pheral Control ROM which allowed to store and run binary machine programs. The first
one was a kind of PEEK function for the HP9810A. By means of this the complete memory
contents could be dumped. It was a good verification of the correctness of the logic analyz-
er read out. The next assembler program was a PEEK function for the HP9830A, whose
firmware contents was not available so far. This also succeeded in a complete dump of the
system ROM and additional plug-in ROMs.
The last phase of the project was the Java programming of a 9800 CPU emulator. Be-
cause of the properties of the display and keyboard I/O devices the HP9830A seemed to
be the easiest candidate for emulation of the whole hardware. There where several risks in
this phase as it was not sure whether the CPU instructions where completely documented
in the various U.S. patents of the series 9800 machines. Also it was difficult to estimate the
execution speed of the emulator. The machines should at least run in real time speed.
Moreover the I/O principles where very poor documented and difficult to understand in de-
tail.
In fact during the first tests of the emulator it showed that some CPU instructions had to
behave different from the available 'documentation'. Esp. the floating point macro instruc-
tions took some weeks of debugging and step-by-step analyzing until they produced cor-
rect results. Also the stack handling of JSM /RET and the interrupt service routine gave
some unexpected surprises. Late in the project, when testing the HP9820A together with
the HP9865A, there showed one more anomaly in the IO interface. After many hours of
testing, debugging, and re-programming it was only one possible solution left: the handling
of the CEO handshake in the instruction STF 1 was wrong. There was only one constella-
tion in the firmware of all three calculators where this special situation occurred.
With the core functionalities of the HP9830 and getting the machine up running with a very
simple output and input interface, the proof of concept was done. After that I added a sim-
ulated keyboard and LED matrix display. Photographs and sound recordings of the original
machine where used to resemble a most naturalistic simulation.
The display simulation is somewhat tricky: in the original machine the display output is
controlled and multiplexed by the CPU. That means the CPU outputs every displayed
character many times a second to give to the human eye a quasi steady display. When im-

56

plemented 1:1 in software, this resulted in heavy flickering and high load of the host CPU.
So I decided to update the display output only if a character changed, i.e. when a new out-
put was generated by DISP command, user entry and the like. This has only on disadvant-
age: the display keeps visible even if the calculator is busy. This issue finally is solved by
clearing the simulated display if the DEN (display enable) signal is false for more than a
certain amount of executed CPU instructions (5000).
In the next steps several peripheral devices where added: the HP9860A marked card
reader, the HP9866A thermal printer, and the HP9862A plotter. The device which caused
the most work was the HP9865A cassette tape drive, which is available build-in to the
HP9830A and as external device. The I/O protocol is very complicated and the timing cru-
cial, since the 9865 reads and writes asynchronously to the main machine. Some tape op-
erations run completely in background and send interrupts to the calculator. JAVA multi
threading techniques had to be used intensely. It took several weeks until the 9865 worked
satisfactory.
When the HP9830 and the peripherals where completed the next machine to be imple-
mented was the HP9810A. Reusing or extending most of the classes of the HP9830, the
9810 was basically brought up in a few days. Again the display simulation required a spe-
cial timing logic. Most work had to be spend in the magnetic card reader. It has a similar I/
O protocol as the HP9865, but the timing even more critical. Again it took more than two
weeks to get a stable solution.
The last one was the HP9820A. With the experience of the first two machines it would
have take only a few days to complete the 9820. If there didn't occur this annoying prob-
lem with the cassette memory ROM and the 9865 (see above).
In several releases of the emulator more add-on ROM blocks and application programs
where added to the distribution. Some of them where borrowed by contributors (see
chapter 7) and read out using the mentioned assembler programs. Some ROM blocks are
obviously very rare and could not be acquired until now. Amongst these are the HP9810A
User Defined Functions ROM and the Typewriter ROM. Since their contents are com-
pletely listed in the HP9810A patent I decided to re-create them from scratch and type the
octal values from the patent listings. By disassembling and cross-checking the instructions
all typing errors could be eliminated. The graphics of the ROM blocks and keyboard over-
lays where also created artificially with GIMP on basis of other existing ROMs.
As of January 2009 the project took more than 900 hours of time for research, design, pro-
gramming, and testing.

6.1 Literature and Links
The architecture of the HP9800 series is most completely described in the following pat-
ents available from the U.S. patent office (www.uspto.gov):
HP9810A: 3,859,635 Programmable Calculator
HP9820A: 3,839,630 Programmable Calculator Employing Algebraic Language
HP9830A: 4,012,725 Programmable Calculator
There are also german patents available from Deutsches Patent- und Markenamt
(www.dpma.de):
HP9810A: 2264920, 2264923, 2264871
HP9820A: 2262725, 2264896, 2264897, 2264898
HP9830A: 2333908, 2365567, 2365568, 2365570

57

http://www.uspto.gov/
http://www.dpma.de/

Further information about the history and technology of HP calculators can be found at
www.hpmuseum.org
www.hp9825.com
www.hp9831.com
www.hp9845.net
http://www.classiccmp.org/hp/9800.htm
Most calculator and peripheral manuals are available for download from
www.hpmuseum.net

58

http://www.hpmuseum.net/
http://www.classiccmp.org/hp/9800.htm
http://www.hp9845.net/
http://www.hp9831.com/
http://www.hp9825.com/
http://www.hpmuseum.org/

7. Contributions to the Project
The author doesn't own all option ROMS, interfaces and peripheral devices. So all users
are invited to contribute by borrowing or donating items which are still missing. These can
be analyzed or read out in the authors lab.
Also wanted is original software for all models. There are methods to transfer program list-
ings or file dumps to a PC, these programs could be made available for use with the
HP9800E.
You may also join as a developer. The IDE used for this project is Eclipse 3.2.

7.1 Contributors
Jon Johnston (hpmuseum.net)
provided several ROM blocks (HP11252A, HP11262A, HP11222A, HP11283B). The ROM
contents where read out and made available in the emulator.
He also provided photographs of an original HP9821A, and the components of the
HP9880B mass memory system.
Moreover he borrowed several original HP tape cassettes and magnetic cards containing
applications, diagnostics, and system programs for the HP9810, 9820, and 9830. The pro-
grams where extracted and included in the applications folder of the emulator.

Tim Eliseo
has created several add-on software packages for the HP9830A and has provided several
bug fixes and performance improvements for the emulator.

David Bryan
was the initiator of the keyboard configuration file and provided several hints for functional
improvement and internationalization. He also tested pre-releases of the emulator and loc-
alized a lot of bugs. Dave also created internationalized keyboad configurations for the
HP9820A and HP9830A which especially matches US keyboards.

Philippe Sonnet
borrowed several magnetic cards with programs for the HP9810A. The contents where ex-
tracted and are included in the applications folder of the emulator.

59

Appendix

A Creation and Execution of Assembler Programs
Originally the calculators of the 9800 series where not designed to execute user programs
in assembler or machine language. The machine instructions of the 9800 CPU where not
well documented (only as part of some U.S. patents describing the machines) and there
was no assembler to generate machine instructions from an assembler source code.
Nevertheless there where so called special programs available from HP, which served for
certain applications esp. in controlling of peripheral devices. These special programs
where created outside of the calculators and sold by HP.
During realization of the HP9800 emulator most of the system and plug-in ROMs where
disassembled and analyzed. Several ways where found to insert user created machine
programs into the calculator memory and execute them. Of course detailed knowledge of
the assembler language, which is common to all calculators, and of the machine instruc-
tions is necessary. There is no assembler available to generate machine instructions from
an assembler source. The coding has to be done by hand. It is beyond the scope of this
manual to describe the 9800 CPU instructions in detail.
Starting from an assembler source the first step is to obtain the instruction opcodes, a 16-
bit code of each CPU instruction.

A.1 HP9810A
To execute assembler programs on a HP9810A the presence of a Peripheral Control ROM
1 or 2 is necessary. These ROMs contain undocumented features to store a machine lan-
guage program in the user RWM and execute it.
Machine programs are stored in the user RWM, precisely in data registers, beginning from
the highest available register (108) and continuing with register 107, 106, etc. The data re-
gisters are located at the octal memory addresses 001000 (register 108), 001004 (register
107), and so on. So the machine instructions are stored from address 001000 upward. In
fact the first word at 001000 is used as an internal program length counter, so the user
program starts at address 001001.

A.1.1 Coding the Program
For preparation all opcodes of the machine program have to be represented as 4 digit (16
bit) hexadecimal values. This can conveniently done using OpenOffice Calc. Next every
hexadecimal value has to be represented by HP9810A keys with matching key codes by
the following scheme:

60

Hex digit HP9810A key
0 – 9 0 - 9
A x2

B a
C b
D G
E F
F 1/x

Example:

Instruction Oct.
opcode

Hex.
opcode

HP9810A keys

LDB B,I 074537 795F 7 9 5 1/x
STB 01717 035717 3BCF 3 a b 1/x
LDA 016 020016 200E 2 0 0 F
CLR 170000 F000 1/x 0 0 0

A.1.2 Entering the Program
Before entering the coded program the length counter at address 001000 has to be
cleared. This is done by storing 0 to register 108.

Press: 0 x→() 1 0 8
Then each opcode has to be entered using the undocumented format sequence

FORMAT 3 b key1 key2 key3 key4
Each time this sequence is entered the original 16 bit value is reconstructed by the calcu-
lator and stored in a memory position given by the said length counter plus 01001. After
that the length counter is incremented by one.
For the example from above the keys to be pressed would be:

FORMAT 3 b 7 9 5 1/x
FORMAT 3 b 3 a b 1/x
FORMAT 3 b 2 0 0 F
FORMAT 3 b 1/x 0 0 0

This procedure is of course lengthy and error prone. Mistakes can not be corrected. So the
best way is to enter the whole sequence in the program memory and save it on a magnetic
card. The code then can be corrected re-entered as necessary.

A.1.3 Executing the Program
The stored machine program can be executed by the format sequence

61

FORMAT 3 CONTINUE
The machine program is executed beginning at address 001001. The last executed in-
struction should be RET (opcode 170402).

A.1.4 Example Program
Here is an example assembler program which implements a 'PEEK' function. The program
takes the value of the X register, converts it to a 16 bit address value, reads the memory
location pointed to by this address, and returns the value in the X register.
The resulting format sequences are stored on a magnetic card, which is contained in the
HP9800E distribution (applications/HP9810/HP9810A PEEK.mcard).

01001 020004 LDA D4 ; A = addr of X
01002 024015 LDB D15 ; B = addr of AR1
01003 170004 XFR ; transfer X->AR1
01004 074742 SBR 16 ; B = 0
01005 035717 STB D1717 ; (BTMP) = B
01006 021744 LDA D1744 ; A = Exponent word of AR1
01007 070113 SAP *+2 ; A>=0?
01010 067024 JMP J1024 ; If not: address=0
01011 070342 J1011 SAR 8 ; A = Exponent byte
01012 024063 LDB D63 ; B = 1
01013 070037 ADB A ; B = A+1
01014 000023 ADA D23 ; A = A-5
01015 070112 SAM *+2 ; Exponent >4 ?
01016 025065 LDB D1065 ; B = 5 ; max. 5 digits
01017 035716 J1017 STB D1716 ; (addrC) = B ; Address counter
01020 175400 J1020 DLS ; get highest digit of AR1 and shift AR1
left
01021 063056 JSM J1056 ; find binary equivalent
01022 055716 DSZ D1716 ; all digits processed?
01023 067020 JMP J1020 ; no, repeat
;
01024 074537 J1024 LDB B,I ; B = (B) ; load contents of memory
location in B
01025 035717 STB D1717 ; (BTEMP) = B
01026 020016 LDA D16 ; A = addr of AR2
01027 170000 CLR ; Clear AR2
01030 021066 LDA D1066 ; A = 16 ; process 16 bits
01031 031716 STA D1716 ; initialize counter
01032 025717 J1032 LDB D1717 ; B = (BTEMP)
01033 074133 SBP *+2,C ; Is bit15 of B zero?
01034 072075 SEC *+1,S ; Set E to 1111 binary
01035 074744 SBL 1 ; B = B<<1
01036 035717 STB D1717 ; (BTEMP) = B
01037 020016 LDA D16 ; A = addr of AR2
01040 024015 LDB D15 ; B = addr of AR1
01041 170004 XFR ; transfer AR2->AR1
01042 170560 FXA ; AR2 = AR2+AR1+E = 2*AR2 + bit15(BTEMP)
01043 055716 DSZ D1716 ; all bits processed?
01044 067032 JMP J1032 ; no, continue
01045 171450 NRM ; normalize AR2
01046 074056 CMB ; B = !B = -B-1
01047 004106 ADB D106 ; B = 12-B-1 = 11-B
01050 074404 SBL 8 ; B = B<<8 ; exponent byte
01051 035754 STB D1754 ; Exponent word of AR2 = B
01052 020016 LDA D16 ; A=addr of AR2

62

01053 024004 LDB D4 ; B=addr of X
01054 170004 XFR ; transfer AR2->X
01055 170402 RET
;
01056 025717 J1056 LDB D1717 ; B = (BTEMP)
01057 074704 SBL 2 ; B = 4*B
01060 005717 ADB D1717 ; B = B+BTEMP = 5*BTEMP
01061 074037 ADB B ; B = 10*BTEMP
01062 070037 ADB A ; B = B+A = 10*BTEMP+A
01063 035717 STB D1717 ; (BTEMP) = B
01064 170402 RET
;
01065 000005 D1065 OCT 00005 ; 5
01066 000020 D1066 OCT 00020 ; 16

A.2 HP9830A
To create assembler programs on a HP9830A and store them permanently on tape the
presence of a Infotek Fast Basic ROM II is necessary. This ROM can be used to directly
read and write memory locations by means of two undocumented functions. Additionally
with the FDATA command it is possible to create binary files and store machine programs
on tape.
Machine programs are stored in the user RWM, at the upper end of the RWM area. The
structure of a machine program is the same as of an add-on ROM module. In fact machine
programs are managed by the system exactly like ROM blocks. A machine program can
contain one or more commands or functions with their own keywords. These keywords can
be used in the same way in BASIC programs or command lines like with build-in functions.
The ROM block structure is described in the U.S. patent 4,012,725 (Programmable Calcu-
lator). Below follows an excerpt from this patent.

Communication with the routines in the various plug-in read-only memory modules is accom-
plished through a series of mnemonic tables and jump tables. The standard firmware, the cassette
operating firmware, and each of the plug-in read-only memory modules all contain the following
tables:

1. A statement mnemonic table

2. A statement syntax jump table

3. A statement execution jump table

4. A system command mnemonic table

5. A system command execution jump table

6. A function mnemonic table

7. A function execution jump table

8. A non-formula operator mnemonic table

63

All of these tables, with the exception of the statement execution jump table, may appear anywhere
within a memory module. The last five words in each module are used by the table scan routines
[...] to find the actual location of the tables. The last word of each module contains a unique opera-
tion code word for that particular module. The second from the last word contains a relative address
of the statement mnemonic table. The third from the last word contains a relative address of the sys-
tem command mnemonic table. The fourth from the last word contains a relative address to the
function mnemonic table. The fifth from the last word contains a relative address to the non-for-
mula operator table. The jump tables for statement syntax, system command execution, and func-
tion execution are located directly above their respective mnemonic tables. The statement execution
jump table is located directly above the fifth from the last word of each module. The complete set of
tables for the standard firmware is shown in the firmware listings [...].

Each of the mnemonic tables consists of a string of seven-bit ASCII character and six-bit operation
code characters packed two characters per sixteen-bit word. The eighth bit of each character is used
to indicate whether that character is ASCII or an operator code. A zero in the eighth bit indicates
ASCII and a one indicates an operation code. The seventh bit of each operation code character is
used to indicate whether that operation code is the last character in that table. The jump table ad-
dress for each mnemonic is found by subtracting the operation code for that mnemonic from the
starting address of the associated mnemonic table. The internal stored format for program state-
ments consists of a series of operation codes, operand codes, and other special codes. The first word
of each statement contains the line number of that statement in binary format. The second word
contains both the operation code for that particular statement mnemonic and also the length of the
statement. The length information is used by various firmware routines to scan from one statement
to the next. The third word contains the operation code for the table or optional read-only memory
module, and it also contains the first operand code. The remainder of the statement is stored with
one operator code and one operand code in each word.

A.2.1 Coding the Program
The opcodes of the machine program have to be supplemented by a pointer structure and
memory for the keyword(s) as explained above. This can be demonstrated best by means
of a sample program.
The following program represents a PEEK function which returns the contents of a
memory location whose address is given as function parameter. In this example the pro-
gram is located at the end of first memory page 000000-001777. Generally the machine
program should be written page relocatable, that means that only page relative addressing
should be used. Later the program will be loaded at the end of the last RWM page.

001750 4 4 ; Execution Jump Table: +4 for Opcode=1
001751 50105 "PE"
001752 42513 "EK"
001753 140400 OPCODE=1 ; Opcode-Bit(0x80) + Last-Opcode(0x40) + 1
001754 060445 JSM XFAR2+1 ; Transfer Argument -> AR2
001755 160225 JSM FLTRA,I ; Convert Float AR2 -> Int B
001756 074742 SBR 16 ; If Overflow: B=0
001757 074537 LDB B,I ; load contents of memory location in B
001760 164227 JMP FXFLA,I ; Convert Int to Float ->AR2 and return
001761 000000 ; unused memory
001762 000000 ;
001763 000000 ;
001764 000000 ;
001765 000000 ;

64

001766 000000 ;
001767 000000 ;
001770 000000 ;
001771 000000 ; unused memory
001772 177777 -1 ; Statement Jump Table
001773 177777 -1 ; Ptr. to Non-formula Operator Mnemonic
Table
001774 177755 -19 ; Ptr. to Function Mnemonic Table
001775 177775 -3 ; Ptr. to Command Mnemonic Table
001776 177774 -4 ; Ptr. to Statement Mnemonic Table
001777 060000 ; Module operation code 60000

A.2.2 Entering the Program
For preparation all opcodes of the machine program have to be represented as decimal in-
teger values between -32767 and +32767. This can conveniently done using OpenOffice
Calc. Next a BASIC program has to be written which creates a binary tape file from the as-
sembler opcodes. The decimal opcodes have to be stored in DATA statements.
For creation of the binary file a special plug-in ROM is necessary, which is supplied with
the HP9800E emulator. The Infotek Fast Basic ROM II contains the FDATA instruction
which allows creation of arbitrary file types. For further informations refer to the original In-
fotek manual.
The appropriate BASIC program for the above PEEK example is presented here:
10 DIM HI[7],BI[24]
20 FOR I=1 TO 7
30 READ H[I]
40 NEXT I
50 FOR I=1 TO 24
60 READ B[I]
70 NEXT I
80 FDATA S,H[1],B
90 STOP
100 DATA 0,24,1,50,0,0,0
110 DATA 4,20549,17739,-16128,24869,-8043,31202,31071,-5993,0,0,0
120 DATA 0,0,0,0,0,0,-1,-1,-19,-3,-4,24576
130 END

The DATA statement in line 100 defines the header of the binary file. The first value is the
file number (in this example 0), the second the aktual file size (24 words), the third value is
the file type (HP9830 binary=1), and the fourth value is the absolute file size.
Before executing the program MARK an empty file 0 (or whatever was defined as file num-
ber) of the same absolute size as in the above DATA statement. Then position the tape to
the beginning of the MARKed file using FIND 0 (or whatever). Then RUN the program.

A.2.3 Executing the Program
An assembler program can be loaded from a binary tape file into the calculator memory by
the command
LOAD BIN <file number>
After that the assembler program can be executed by entering the corresponding keyword,

65

which is defined in the program.
The example program above can be executed by entering PEEK <address>, where ad-
dress is an integer value. PEEK is a function and returns an integer value which can be
used in expressions like any other value.

A.3 HP9820A / HP9821A
At the moment there is no method known to directly create assembler programs on a
HP9820A. Nevertheless it is possible to create binary files for this machine using a
HP9830A and to load and execute machine programs on the HP9820/21A.
To execute assembler programs on a HP9820A the presence of the HP11223A Cassette
Memory / Special Programs ROM is necessary. The HP9821A contains the required func-
tions in system ROM.
Machine programs are stored in the user RWM, at the lower end of the RWM area, begin-
ning with address 016426 (octal). The structure of a machine or so called 'special' program
is the much similar to that used for the HP9830A, which is described above. A machine
program can contain one or more commands or functions identified by keywords. A pro-
gram is found by its keyword using the instruction CSP “keyword” (Call Special Program).
To create HP9820/21A assembler programs on a HP9830A and store them permanently
on tape the presence of a Infotek Fast Basic ROM II is necessary. The FDATA command
is used to create binary files and store machine programs on tape.

A.3.1 Coding the Program
The opcodes of the machine program have to be supplemented by a pointer structure and
memory for the keyword(s). This can be demonstrated best by means of a sample pro-
gram.
The following program represents a PEEK function which returns the contents of a
memory location whose address is given in register Z. The result is returned in register Z.
The program code is nearly identical to that of the HP9810A example program above.

16426 016430 OCT D16430 ; Pointer to first name
16427 177777 -1 ; End of list
16430 050105 D16430 "PE"
16431 042513 "EK"
16432 177773 -4-1 ; -(len+1) = End of name
16433 016434 J16434 ; Pointer to program start
16434 020442 J16434 LDA D442 ; A = addr of A-reg.
16435 000451 ADA D451 ; A = A+024 = addr of Z-reg.
16436 024447 LDB D447 ; B = addr of AR1
16437 170004 XFR ; transfer Z->AR1
16440 074742 SBR 16 ; B = 0
16441 035717 STB D1717 ; (BTMP) = B
16442 021744 LDA D1744 ; A = Exponent word of AR1
16443 070113 SAP *+2 ; A>=0?
16444 067460 JMP J16460 ; If not: address=0
16445 070342 J16445 SAR 8 ; A = Exponent byte
16446 024403 LDB D403 ; B = 1
16447 070037 ADB A ; B = A+1
16450 000411 ADA D411 ; A = A-5
16451 070112 SAM *+2 ; Exponent >4 ?

66

16452 024377 LDB D377 ; B = 5 ; max. 5 digits
16453 035716 J16453 STB D1716 ; (addrC) = B ; Address counter
16454 175400 J16454 DLS ; get highest digit of AR1 and shift AR1
left
16455 062513 JSM J16513 ; find binary equivalent
16456 055716 DSZ D1716 ; all digits processed?
16457 066454 JMP J16454 ; no, repeat
;
16460 074537 J16460 LDB B,I ; B = (B) ; load contents of memory
location in B
16461 035717 STB D1717 ; (BTEMP) = B
16462 020450 LDA D450 ; A = addr of AR2
16463 170000 CLR ; Clear AR2
16464 020364 LDA D364 ; A = 16 ; process 16 bits
16465 031716 STA D1716 ; initialize counter
16466 025717 J16466 LDB D1717 ; B = (BTEMP)
16467 074133 SBP *+2,C ; Is bit15 of B zero?
16470 072075 SEC *+1,S ; Set E to 1111 binary
16471 074744 SBL 1 ; B = B<<1
16472 035717 STB D1717 ; (BTEMP) = B
16473 020450 LDA D450 ; A = addr of AR2
16474 024447 LDB D447 ; B = addr of AR1
16475 170004 XFR ; transfer AR2->AR1
16476 170560 FXA ; AR2 = AR2+AR1+E = 2*AR2 + bit15(BTEMP)
16477 055716 DSZ D1716 ; all bits processed?
16500 066466 JMP J16466 ; no, continue
16501 171450 NRM ; normalize AR2
16502 074056 CMB ; B = !B = -B-1
16503 004370 ADB D370 ; B = 12-B-1 = 11-B
16504 074404 SBL 8 ; B = B<<8 ; exponent byte
16505 035754 STB D1754 ; Exponent word of AR2 = B
16506 020450 LDA D450 ; A=addr of AR2
16507 024442 LDB D442 ; B=addr of A-reg.
16510 004451 ADB D451 ; B = B+024 = addr of Z-reg.
16511 170004 XFR ; transfer AR2->Z
16512 170402 RET
;
16513 025717 J16512 LDB D1717 ; B = (BTEMP)
16514 074704 SBL 2 ; B = 4*B
16515 005717 ADB D1717 ; B = B+BTEMP = 5*BTEMP
16516 074037 ADB B ; B = 10*BTEMP
16517 070037 ADB A ; B = B+A = 10*BTEMP+A
16520 035717 STB D1717 ; (BTEMP) = B
16521 170402 RET

A.3.2 Entering the Program
For preparation all opcodes of the machine program have to be represented as decimal in-
teger values between -32767 and +32767. This can conveniently done using OpenOffice
Calc. Next a BASIC program has to be written which creates a binary tape file from the as-
sembler opcodes. The decimal opcodes have to be stored in DATA statements.
For creation of the binary file a special plug-in ROM is necessary, which is supplied with
the HP9800E emulator. The Infotek Fast Basic ROM II contains the FDATA instruction
which allows creation of arbitrary file types. For further informations refer to the original In-
fotek manual.
The appropriate BASIC program for the above PEEK example is presented here:

67

10 DIM HI[7],BI[60]
20 FOR I=1 TO 7
30 READ H[I]
40 NEXT I
50 FOR I=1 TO 60
60 READ B[I]
70 NEXT I
80 FDATA S,H[1],B
90 STOP
100 DATA 0,60,28,100,0,0,0
110 DATA 7448,-1,20549,17739,-5,7452,8482,297
120 DATA 10535,-4092,31202,15311,9188,28747,28464,28898
130 DATA 10499,28703,265,28746,10495,15310,-1280,25931
140 DATA 23502,27948,31071,15311,8488,-4096,8436,13262
150 DATA 11215,30811,29757,31204,15311,8488,10535,-4092
160 DATA -3728,23502,27958,-3288,30766,2296,30980,15340
170 DATA 8488,10530,2345,-4092,-3838,11215,31172,3023
180 DATA 30751,28703,15311,-3838
190 END

The DATA statement in line 100 defines the header of the binary file. The first value is the
file number (in this example 0), the second the aktual file size (60 words), the third value is
the file type (HP9820 binary=28), and the fourth value is the absolute file size.
Before executing the program MARK an empty file 0 (or whatever was defined as file num-
ber) of the same absolute size as in the above DATA statement (100). Then position the
tape to the beginning of the MARKed file using FIND 0 (or whatever). Then RUN the pro-
gram.

A.3.3 Executing the Program
A HP9820A machine program can be loaded from a binary tape file into the calculator
memory by the command
LDF <file number>
After that the program can be executed this the CSP instruction with the corresponding
keyword parameter, which is defined in the program.
The example program above can be executed by entering
<address> → Z
CSP “PEEK”
The register Z now contains the memory value at the given address.

68

B Machine Instruction Set
The design of the series 9800 calculators, a firmware listing, and the description of the
HP9800 CPU instruction set is contained in the following U.S. patents:
HP9810A: 3,859,635 Programmable Calculator
HP9820A: 3,839,630 Programmable Calculator Employing Algebraic Language
HP9830A: 4,012,725 Programmable Calculator
Below is an excerpt of the HP9830A patent which describes the CPU instructions and their
corresponding opcodes.

BASIC INSTRUCTION SET
Every routine and subroutine of the calculator comprises a sequence of one or more of 71 basic six-
teen-bit instructions listed below. These 71 instructions are all implemented serially by the micro-
processor in a time period which varies according to the specific instruction, to whether or not it is
indirect, and to whether or not the skip condition has been met.

Upon completion of the execution of each instruction, the program counter (P register) has been in-
cremented by one except for instructions JMP, JSM, and the skip instructions in which the skip con-
dition has been met. The M-register is left with contents identical to the P-register. The contents of
the addressed memory location and the A and B registers are left unchanged unless specified other-
wise.

Memory Reference Group
The 14 memory reference instructions refer to the specific address in memory determined by the ad-
dress field <m>, by the ZERO/CURRENT page bit, and by the DIRECT/INDIRECT bit. Page ad-
dressing and indirect addressing are both described in detail in the reference manuals for the Hew-
lett-Packard Model 2116 computer (hereinafter referred to as the HP 2116).

The address field <m> is a 10 bit field consisting of bits 0 through 9. The ZERO/CURRENT page
bit is bit 10 and the DIRECT/INDIRECT bit is bit 15, except for reference to the A or B register in
which case bit 8 becomes the DIRECT/INDIRECT bit. An indirect reference is denoted by a <, I>
following the address <m>.

REGISTER REFERENCE OF A OR B REGISTER: If the location <A> or is used in place of
<m> for any memory reference instruction, the instruction will treat the contents of A or B exactly
as it would be contents of location <m>. See the note below on the special restriction for direct re-
gister reference of A or B.

ADA m,I Add to A. The contents of the addressed memory location m are added (binary add) to
contents of the A register, and the sum remains in the A register. If carry occurs from bit 15, the
E register is loaded with 0001, otherwise E is left unchanged.

ADB m,I Add to B. Otherwise identical to ADA.

CPA m,I Compare to A and skip if unequal. The contents of the addressed memory location are
compared with the contents of the A register. If the two 16-bit words are different, the next in-
struction is skipped; that is, the P and M registers are advanced by two instead of one. Otherwise,
the next instruction will be executed in normal sequence.

CPB m,I Compare to B and skip is unequal. Otherwise identical to CPA.

69

LDA m,I Load into A. The A register is loaded with the contents of the addressed memory loca-
tion.

LDB m,I Load into B. The B register is loaded with the contents of the addressed memory location.

STA m,I Store A. The contents of the A register are stored into the addressed memory location.
The previous contents of the addressed memory location are lost.

STB m,I Store B. Otherwise identical to STA.

IOR m,I Inclusive OR to A. The contents of the addressed location are combined with the contents
of the A register as an INCLUSIVE OR logic operation.

ISZ m,I Increment and Skip if Zero. The ISZ instruction adds ONE to the contents of the ad-
dressed memory location. If the result of this operaion is ZERO, the next instruction is skipped,
that is, the P and M registers are advanced by TWO instead of ONE. The incremental value is
writted back into the addressed memory location. Use of ISZ with the A or B register is limited
to indirect reference; see footnote on restrictions.

AND m,I Logical AND to A. The contents of the addressed location are combined with the con-
tents of the A register as an AND logic operation.

DSZ m,I Decrement and Skip if Zero. The DSZ instruction subtracts ONE from the contents of the
addressed memory location. If the result of this operation is zero, the next instruction is skipped.
The decremented value is writted back into the addressed memory location. Use of DSZ with the
A or B register is limited to indirect reference; see footnote on restrictions.

JSM m,I Jump to Subroutine. The JSM instruction permits jumping to a subroutine in either ROM
or R/W memory. The contents of the P register is stored at the address contained in location
1777 (stack pointer). The contents of the stack pointer is incremented by one, and both M and P
are loaded with the referenced memory location.

JMP m,I Jump. This instruction transfers control to the contents of the addressed location. That is,
the referenced memory location is loaded into both M and P registers, effecting a jump to that
location.

Shift-Rotate Group
The eight shift-rotate instructions all contain a 4 bit variable shift field <n> which permits a shift of
one through 16 bits; that is, 1 ≤ n ≤ 16. If <n> is omitted, the shift will be treated as a one bit shift.
The shift code appearing in bits 8,7,6,5 is the binary code for n-1, except for SAL and SBL, in
which cases the complementary code for n-1 is used.

AAR n Arithmethic right shift of A. The A register is shifted right n places with the sign bit (bit
15) filling all vacated bit positions. That is, the n+1 most significant bits become equal to the
sign bit.

ABR n Arithmetic right shift of B. Otherwise identical to AAR.

SAR n Shift A right. The A register is shifted right n places with all vacated bit positions cleared.
That is, the n most significant bits become equal to zero.

SBR n Shift B right. Otherwise identical to SAR.

SAL n Shift A left. The A register is shifted left n places with the n least significant bits equal to
zero.

SBL n Shift B left. Otherwise identical to SAL.

RAR n Rotate A right. The A register is rotated right n places, with bit 0 rotated around to bit 15.

70

RBR n Rotate B right. Otherwise identical to RAR.

Alter-Skip Group
The sixteen alter-skip instructions all contain a 5-bit variable skip field <n> which, upon meeting
the skip condition, permits a relative branch to any one of 32 locations. Bits 9,8,7,6,5 are coded for
positive or negative relative branching in which the number <n> is the number to be added to the
current address, (skip in forward direction), and the number <-n> is the number to be subtracted
from the current address, (skip in negative direction). If <n> is omitted, it will be interpreted as a
ONE.

<n>=0 CODE=00000 REPEAT SAME INSTRUCTION
<n>=1 CODE=00001 DO NEXT INSTRUCTION
<n>=2 CODE=00010 SKIP ONE INSTRUCTION
<n>=15 CODE=01111 ADD 15 TO ADDRESS
<n>=-1 CODE=11111 DO PREVIOUS INSTRUCTION
<n>=-16 CODE=10000 SUBTRACT 16 FROM ADDRESS
<n>=nothing CODE=00001 DO NEXT INSTRUCTION

The alter bits consist of bits 10 and bits 4. The letter <S> following the instruction places a ONE in
bit 10 which causes the tested bit to be set after the test. Similarly the letter <C> will place a ONE
In bit 4 to clear the test bit. If both a set and clear bit are given, the set will take precedence. Alter
bits do not apply to SZA, SZB, SIA, and SIB.

SZA n Skip if A zero. If all 16 bits of the A register are zero, skip to location defined by n.
SZB n Skip if B zero. Otherwise identical to SZA.

RZA n Skip if A not zero. This is a Reverse Sense skip of SZA.

RZB n Skip if B not zero. Otherwise identical to RZA.

SIA n Skip if A zero; then increment A. The A register is tested for zero, then incremented by
one. If all 16 bits of A were zero before incrementing, skip to location defined by n.

SIB n Skip if B zero; then increment B. Otherwise identical to SIA.

RIA n Skip if A not zero; then increment A. This is a Reverse Sense skip of SIA.

RIB n Skip if B not zero; then increment B. Otherwise identical to RIA.

SLA n,S/C Skip if Least Significant bit of A is zero. If the least significant bit (bit 0) of the A
register is zero, skip to location defined by n. If either S or C is present, the test bit is altered ac-
cordingly after test.

SLB n,S/C Skip if Least Significant bit of B is zero. Otherwise identical to SLA.

SAM n,S/C Skip if A is Minus. If the sign bit (bit 15) of the A register is a ONE, skip to loca-
tion defined by n. If either S or C is present, bit 15 is altered after the test.

SBM n,S/C Skip if B is Minus. Otherwise identical to SAM.

SAP n,S/C Skip if A is Positive. If the sign bit (bit 15) of the A register is a ZERO, skip to
location defined by n. If either S or C is present, bit 15 is altered after the test.

SBP n,S/C Skip if B is Positive. Otherwise identical to SAP.

SES n,S/C Skip if Least Significant bit of E is Set. If bit 0 of the E register is a ONE, skip to
location defined by n. If either S or C is present, the entire E register is set or cleared respect-
ively.

71

SEC n,S/C Skip if Least Significant bit of E is Clear. If bit 0 of the E register is a ZERO, skip
to location defined by n. If either S or C is present, the entire E register is set or cleared respect-
ively.

Complement-Execute-DMA Group.
These seven instructions include complement operations and several special-purpose instructions
chosen to speed up printing and extended memory operations.

CMA Complement A. The A register is replaced by its One's complement.

CMB Complement B. The B register is replaced by its One's complement.

TCA Two's Complement A. The A register is replaced by its One's Complement and incremen-
ted by one.

TBC Two's complement B. The B register is replaced by its One's Complement and incremen-
ted by one.

EXA Execute A. The contents of the A register are treated as the current instruction, and ex-
ecuted in the normal manner. The A register is left unchanged unless the instruction code causes
A to be altered.

EXB Execute B. Otherwise identical to EXA.

DMA Direct Memory Access. The DMA control in Extended Memory is enabled by setting the
indirect bit in M and giving a WTM instruction. The next ROM clock transfers A→M and the
following two cycles transfer B→M. ROM clock then remains inhibited until released by DMA
control.

Note: Special Restriction for Direct Register Reference of A or B
For the five register reference instructions which involve a write operation during execution, a re-
gister reference to A or B must be restricted to an INDIRECT reference. These instructions are
STA, STB, ISZ, DSZ, and JSM. A DIRECT register reference to A or B with these instructions
may result in program modification. (This is different from the hp 2116 in which a memory refer-
ence to the A or B register is treated as a reference to locations 0 or 1 respectively.) A reference to
location 0 or 1 will actually refer to locations 0 or 1 in Read Only Memory.

Input/Output Group (IOG)
The eleven IOG instructions, when given with a select code, are used for the purpose of checking
flags, setting or clearing flag and control flip-flops, and transferring data between the A/B registers
and the I/O register.

STF <SC> Set the flag. Set the flag flip-flop of the channel indicated by select code <SC>.

CLF <SC> Clear the flag flip-flop of the channel indicated by select code <SC>.

SFC <SC> Skip if flag clear. If the flag flip-flop is clear in the channel indicated by <SC>,
skip the next instruction.

SFS <SC> H/C Skip if flag set. If the flag flip-flop is set in the channel indicated by <SC>, skip
the next instruction. H/C indicates if the flag flip-flop should be held or cleared after executing
SFS.

CLC <SC> H/C Clear control. Clear the control flip-flop in the channel indicated by <SC>. H/C
indicates if the flag flip-flop should be held or cleared after executing CLC.

STC <SC> H/C Set Control. Set the control flip-flop in the channel indicated by <SC>. H/C indic-
ates if the flag flip-flop should be held or cleared after executing STC.

72

OT* <SC> H/C Output A or B. Sixteen bits from the A/B register are output to the I/O register. H/
C allows holding or clearing the flag flop after execution of OT*. The different select codes al-
low different functions to take place after loading the I/O register.

SC=00 Data from the A or B register is output eight bits at a time for each OT* instruction
given. The A or B register is rotated right eight bits.

SC=01 The I/O register is loaded with 16 bits from the A/B registers.

SC=02 Data from the A/B register is output one bit at a time for each OT* instruction for the
purpose of giving data to the Magnetic Card Reader. The I/O register is unchanged.

SC=04 The I/O register is loaded with 16 bits from the A/B register and the control flip flop
for the printer is then set.

SC=08 The I/O register is loaded with 16 bits from the A/B register and the control flip flop
for the display is then set.

SC=16 The I/O register is loaded with 16 bits from the A/B register and then data in the I/O
register is transferred to the switch latches.

LI* <01> H/C Load into A or B. Load 16 bits of data into the A/B register from the I/O register.
H/C allows holding or clearing the flag flop after LI* has been executed.

LI* <00> The least significant 8 bits of the I/O register are loaded into the most significant
locations in the A or B register.

MI* <01> H/C Merge into A or B. Merge 16 bits of data into the A/B register from the I/O re-
gister by inclusive or. H/C allows holding or clearing the flag flop after MT* has been executed.

MI* <00> The least significant 8 bits of the I/O register are combined by inclusive OR with
the least significant 8 bits of the A or B register, and rotated to the most significant bit locations
of the A or B register.

Mac instruction Group
A total of 16 MAC instructions are available for operation
a. with the whole floating-point data (like transfer, shifts, etc), or
b. with two floating-point data words to speed up digit and word loops in arithmethic routines.

NOTE: <A0-3> means: contents of A-register bit 0 to 3
AR1 is a mnemonix for arithmetic pseudo-register located in R/W memory on addresses 1744 to

1747 (octal)
AR2 is a mnemonix for arithmethic pseudo-register located in R/W memory on addresses 1754

to 1757 (octal)
Di means: mantissas i-th decimal digit;

most significant digit is D1
least significant digit is D12
decimal point is located between D1 and D2

Every operation with mantissa means BCD-coded decimal operation.

RET Return
16-bit-number stored at highest occupied address in stack is transferred to P- and M-registers.
Stack pointer (=next free address in stack) is decremented by one. <A>, , <E> unchanged.

MOV Move overflow
The contents of E-register is transferred to A0-3. Rest of A-register and E-register are filled by

73

zeros. unchanged.

CLR Clear a floating-point data register in R/W memory on location <A>
Zero→<A>, <A>+1, <A>+2, <A>+3
<A>, , <E> unchanged

EXF Floating-point data transfer in R/W memory from location <A> to location .
Routine starts with exponent word transfer.
Data on location <A> is unchanged.
<E> unchanged.

MRX AR1 Mantissa is shifted to right n-times. Exponent word remains unchanged.
<B0-3> = n (binary coded)
1st shift: <A0-3> → D1 ; Di → Di+1 ; D12 is lost
jth shift: 0 → D1 ; Di → Di+1 ; D12 is lost
nth shift: 0 → D1 ; Di → Di+1 ; D12 → A0-3

0 → E, A4-15

each shift: <B0-3> - 1 → B0-3

<B4-15> unchanged

MRY AR2 Mantissa is shifted to right n-times. Otherwise identical to MRX

MLS AR2 Mantissa is shifted to left once. Exponent word remains unchanged.
0 → D12 ; Di →Di-1 ; D1 → A0-3

 unchanged

DRS AR1 Mantissa is shifted to right once Exponent word remains unchanged
0 → D1 ; Di →Di+1 ; D12 → A0-3

0 → E and A4-15

 unchanged

DLS AR1 Mantissa is shifted to left once. Exponent word remains unchanged.
<A0-3>→D12 ; Di →Di-1 ; D1 → A0-3

0 → E, A4-15

 unchanged

FXA Fixed-point addition Mantissas in pseudo-registers AR2 and AR1 are added together and
result in placed into AR2. Both exponent words remain unchanged. When overflow occurs 0001 is
set into E-reg., in opposite case <E> will be zero.

<AR2> + <AR1> + DC → AR2
DC = 0 if <E> was 0000 before routine execution
DC = 1 if <E> was 1111 before routine execution
, <AR1> unchanged

FMP Fast multiply
Mantissas in pseudo-registers AR2 and AR1 are added together <B0-3>-times and result is placed
into AR2. Total decimal overflow is placed to A0-3. Both exponent words remain unchanged.
<AR2> + <AR1> * <B0-3 >+DC → AR2
DC = 0 if <E> was 0000 before routine execution
DC = 1 if <E> was 1111 before routine execution
0 → E, A4-15

<AR1> unchanged

FDV Fast divide
Mantissas in pseudo-registers AR2 and AR1 are added together so many times until first decimal
overflow occurs. Result is placed into AR2. Both exponent words remain unchanged. Each addi-

74

tion without overflow causes +1 increment of .
1st addition: <AR2> + <AR1> + DC → AR2
DC = 0 if <E> was 0000 before routine execution
DC = 1 if <E> was 1111 before routine execution
next additions: <AR2> + <AR1> → AR2
0 → E
<AR1> unchanged

CMX 10's complement of AR1 mantissa is placed back to AR1, and ZERO is set into E-register.
Exponent word remains unchanged

 unchanged

CMY 10's complement of AR2 mantissa.
Otherwise identical to CMY

MDI Mantissa decimal increment.
Mantissa on location <A> is incremented by decimal ONE on D12 level, result is placed back into
the same location, and zero is set into E-reg.
Exponent word is unchanged.
When overflow occurs, result mantissa will be 1,000 0000 0000 (dec)
and 0001 (bin) will be set into E-reg.
 unchanged.

NRM Normalization
Mantissa in pseudo-register AR2 is rotated to the left to get D1 ≠ 0. Number of these 4-bit left
shifts is stored in B0-3 in binary form (<B4-15 >=0)
when < B0-3 > = 0,1,2,. . . . , 11 (dec) → <E> = 0000
When < B0-3 > = 12 (dec) → mantissa is zero, and <E>= 0001
Exponent word remains unchanged
<A> unchanged.

The binary codes of all of the above instructions are listed in the following coding table, where *
implies the A or B register, D/I means direct/indirect, A/B means A register/B register, Z/C means
zero page (base page) / current page, H/S means hold test bit/set test bit, and H/C means hold test
bit/clear test bit. D/I, A/B, Z/C, H/S and H/C are all coded as 0/1.

75

 CODING TABLE
GROUP OCTAL INSTR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MEMORY -0---- AD* D/I 0 0 0 A/B Z/C ← MEMORY ADDRESS →
REFERENCE -1---- CP* D/I 0 0 1 A/B Z/C
GROUP -2---- LO* D/I 0 1 0 A/B Z/C

-3---- ST* D/I 0 1 1 A/B Z/C
-4---- IOR D/I 1 0 0 0 Z/C
-4---- ISZ D/I 1 0 0 1 Z/C
-5---- AND D/I 1 0 1 0 Z/C
-5---- DSZ D/I 1 0 1 1 Z/C
-6---- JSM D/I 1 1 0 0 Z/C
-6---- JMP D/I 1 1 0 1 Z/C

SHIFT- 07---0 A*R 0 1 1 1 A/B - - ←SHIFT CODE→ 0 0 0 0
ROTATE 07---2 S*R 0 1 1 1 A/B - - 0 0 1 0
GROUP 07---4 S*L 0 1 1 1 A/B - - 0 1 0 0

07---6 R*R 0 1 1 1 A/B - - 0 1 1 0
ALTER- 07---0 SZ* 0 1 1 1 A/B 0 ← SKIP CODE → 0 1 0 0 0
SKIP 07---0 RZ* 0 1 1 1 A/B 1 0 1 0 0 0
GROUP 07---0 SI* 0 1 1 1 A/B 0 1 1 0 0 0

07---0 RI* 0 1 1 1 A/B 1 1 1 0 0 0
07---1 SL* 0 1 1 1 A/B H/S H/C 1 0 0 1
07---2 S*M 0 1 1 1 A/B H/S H/C 1 0 1 0
07---3 S*P 0 1 1 1 A/B H/S H/C 1 0 1 1
07---4 SES 0 1 1 1 A/B H/S H/C 1 1 0 0
07---5 SEC 0 1 1 1 A/B H/S H/C 1 1 0 1

D/I 07--17 ADA 0 1 1 1 A/B - - D/I 0 0 0 0 1 1 1 1
REFERENCE 07--37 ADB 0 1 1 1 A/B - - D/I 0 0 0 1 1 1 1 1
GROUP 07--57 CPA 0 1 1 1 A/B - - D/I 0 0 1 0 1 1 1 1

07--77 CPB 0 1 1 1 A/B - - D/I 0 0 1 1 1 1 1 1
07--17 LDA 0 1 1 1 A/B - - D/I 0 1 0 0 1 1 1 1
07--37 LDB 0 1 1 1 A/B - - D/I 0 1 0 1 1 1 1 1
07-557 STA 0 1 1 1 A/B - - 1 0 1 1 0 1 1 1 1
07-577 STB 0 1 1 1 A/B - - 1 0 1 1 1 1 1 1 1
07--17 IOR 0 1 1 1 A/B - - D/I 1 0 0 0 1 1 1 1
07-637 ISZ 0 1 1 1 A/B - - 1 1 0 0 1 1 1 1 1
07--57 AND 0 1 1 1 A/B - - D/I 1 0 1 0 1 1 1 1
07-677 DSZ 0 1 1 1 A/B - - 1 1 0 1 1 1 1 1 1
07-717 JSM 0 1 1 1 A/B - - 1 1 1 0 0 1 1 1 1
07--37 JMP 0 1 1 1 A/B - - D/I 1 1 0 1 1 1 1 1

COMP 07-016 EX* 0 1 1 1 A/B - - - - - 0 0 1 1 1 0
EXECUTE 070036 DMA 0 1 1 1 0 - - - - - 0 1 1 1 1 0
DMA 07-056 CM* 0 1 1 1 A/B - - - - - 1 0 1 1 1 0

07-076 TC* 0 1 1 1 A/B - - - - - 1 1 1 1 1 0
INPUT 1727-- STF 1 1 1 1 - 1 0 1 1 1 1 ← SELECT CODE →
OUTPUT 1737-- CLF 1 1 1 1 - 1 1 1 1 1 1
GROUP 17-7-- SFC 1 1 1 1 - 1 H/C 1 1 1 0

17-5-- SFS 1 1 1 1 - 1 H/C 1 0 1 0
17-5-- CLC 1 1 1 1 - 1 H/C 1 0 1 1
17-6-- STC 1 1 1 1 - 1 H/C 1 1 0 0
17-1-- OT* 1 1 1 1 A/B 1 H/C 0 0 1 1
17-2-- LI* 1 1 1 1 A/B 1 H/C 0 1 0 1
17-0-- MI* 1 1 1 1 A/B 1 H/C 0 0 0 1

76

GROUP OCTAL INSTR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MAC 170402 RET 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0
GROUP 170002 MOV 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0

170000 CLR 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
170004 XFR 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0
174430 MRX 1 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0
174470 MRY 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0
171400 MLS 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0
170410 DRS 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0
175400 DLS 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0
170560 FXA 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0
171460 FMP 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0
170420 FDV 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0
174400 CMX 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0
170400 CMY 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0
170540 MDI 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0
171450 NRM 1 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0

The following describes the function of each I/O instruction with the 5 allowable select
codes.

 STF <SC> Set the flag. STF is a 240 nanosecond
 positive true pulse which accomplishes the
 following with the various select codes.
 STF 00 Not used by the calculator.
 STF 01 a. Sets the "Service Inhibit" flip-flop
 to the true state (⌐SIH = Low; interrupt
 not allowed).
 b. Causes parallel input data and status
 to be loaded into the I/O register.
 STF 02 Generates a 240 nanosecond positive true MCR
 pulse.
 STF 04,08,16 Not used by the calculator.
 CLF <SC> Clear the flag. CLF is a 240 ns positive
 true pulse which accomplishes the follow-
 ing with the various select codes.
 CLF 00 Not used by the calculator
 CLF 01 a. Clears the "Service Inhibit" flip-flop
 to the false state. (⌐SIH = High;
 interrupt allowed.)
 b. Loads address locations in I/O register
 gister with 0's. (0 = Low)
 c. Clears "Device Ready" flip-flop (⌐CEO =
 High).
 CLF 02 Clears MCR flag flip-flop.
 CLF 04 Clears PEN flip-flop (⌐PEN = Low).
 CLF 08 Clears DEN flip-flop (⌐DEN = High).
 CLF 16 Generates a 240 nanosecond positive true
 KLS pulse
 SFC <SC> H/C Skip if flag clear. SFC is a 240 ns
 positive true pulse which accomplishes
 the following with the various select
 codes. If C is given a 240 nanosecond CLF
 pulse is given after SFC.
 SFC 00 Causes the next instruction to be
 skipped if the STOP key has not been
 depressed.
 SFC 01 Causes the next instruction to be skipped

77

 if Device Ready is true (⌐CEO = Low).
 SFC 02 Causes the next instruction to be skipped
 if the MCR flag flip-flop is clear.
 SFC 04 Causes the next instruction to be skipped
 if the PEN flip-flop is clear. (⌐PEN = Low).
 SFS <SC> H/C Skip is flag set. SFS is a 240 nanosecond
 positive true pulse which accomplishes
 the following with the various codes.
 If C is given then a 240 nanosecond CLF Pulse
 is issued after SFS.
 SFS 00 Causes the next instruction to be skipped
 if the STOP key is depressed.
 SFS 01 Causes the next instruction to be skipped
 if "Device Ready" is false (⌐CEO = High).
 SFS 02 Causes the next instruction to be skipped
 if the MCR flag flip-flop is set.
 SFS 04 Causes the next instruction to be skipped
 if the PEN flip-flop is set (⌐PEN = High).
 CLC<SC> H/C Clear Control. ⌐CLC is a 240 nanosecond negative
 true pulse and is not used by the calculator.
 If C is given then a 240 nanosecond positive true
 CLF pulse is given after CLC.
 STC <SC> H/C Set the Control. STC is a 240 nanosecond posi-
 tive true pulse which accomplishes the
 following with the various select codes.
 If C is given a 240 nanosecond CLF pulse is
 issued after STC.
 STC 00 Not used by the calculator.
 STC 01 Sets the "Device Ready" flip-flop (⌐CEO = Low).
 STC 02 Generates a 240 nanosecond positive true MLS
 pulse for the magnetic card reader.
 STC 04,08,16 Not used by the calculator.
 OTX <SC> H/C Output A or B causes data bits from
 A or B to be shifted to the I/O register
 and accomplishes the following with the
 various select codes. If C is given, a
 240 nanosecond CLF pulse is given after OTX
 is executed.
 OTX 00 The 8 least significant bits in the A
 or B register are shifted non-inverted
 to the 8 least significant locations in
 the I/O register, and 120 nanosecond after the
 8th shift the "Device Ready" flip-flop is
 set (⌐CEO = Low). The 8 most significant
 bits are shifted right 8 places and the
 least 8 significant bits are recirculated
 to the 8 most significant locations in
 the A or B registers. The 8 most signi-
 ficant bits in the I/O register are un-
 touched.
 OTX 01 Sixteen bits from the A or B re-
 gister are shifted non-inverted
 to the I/O register. The data in
 A or B recirculates.
 OTX 02 Not used by the calculator
 OTX 04 Same as OTX 01 and in addition, 120 ns
 after the 16th bit has been shifted nanoseconds
 printer enable flip-flop is set
 OTX 03 Same as OTX 01 and in addition, 120 nanoseconds
 after the 16th bit has been shifted the
 display enable flip-flop is set.

78

 OTX 16 Same as OTX 01 and in addition, 120 nanoseconds
 after the 16th bit has been shifted the
 240 nanosecond KLS signal is generated
 LIX <SC> H/C Load into A or B. Loads data bits from
 the I/O register into the A or B register
 and accomplishes the following with the
 various select codes. If C is given, a
 240 nanosecond CLF pulse is given after LIX is
 executed.
 LIX 00 The eight least significant bits in the
 I/O register are shifted inverted to the
 eight most significant locations of A or
 B, and 120 nanoseconds after the 8th shift the
 "Device Ready" flip-flop is set (⌐CEO = Low).
 A or B is shifted right eight places as
 the I/O register data comes in. The 8
 most significant bits in the I/O register
 are untouched.
 LIX 01 The 16 bits of the I/O register are trans-
 ferred inverted to the A or B register.
 Data in the I/O register is lost.
 LIX 02,04,08,16 Not used by the calculator.
 MIX <SC> H/C Merge into A or B. Merges data from the
 I/O register into A or B registers and
 accomplishes the following with various
 select codes. If C is given, a 240 nanosecond
 CLF pulse is given after MIX is executed.
 MIX 00 The eight least significant bits in the
 I/O register are merged with the eight
 least significant bits of the A or B
 register and shited to the 8 most signi-
 ficant locations of A or B; 120 nanosecond
 the merge takes place the Device Ready
 flip-flop is set (⌐CEO = Low). A or B
 shifts right 8 places as the data is
 merged and shifted to the most significant
 locations. The 8 most significant bits
 of the I/O register are untouched.
 MIX 01 The 16 bits of the I/O register are
 merged with the 16 bits of the A or B
 register and contained in the A or B
 register.
 MIX 02,04,08,16 Not used by the calculator.

79

C Using the HP9800 Console
The emulator includes a console which allows inspection of the CPU registers and analys-
is of machine programs (either in ROM or RWM) at run-time. Additionally there is a special
key-log function which allows to conveniently create key assignment configuration files.

C.1 Disassembler Functions
The disassembler may be controlled in a separate console dialog window. The console
can be opened from any of the emulated calculator models by pressing the keys Ctrl+D.
The dialog is also automatically opened, when a breakpoint or watchpoint condition is met
(chapter 1.1.7). It can be closed by the window close icon or by again pressing the keys
Ctrl+D when the calculator has input focus.

Figure C-1: The console dialog.

In the dialog window each diassembled CPU instruction is output before its execution to-
gether with the current contents of the following registers and flags in one text line:

● CPU registers A and B (16 bit octal values)
● Extend register E (4 bit hexadecimal value)
● I/O register (16 bit hexadecimal value)
● I/O flags (1 bit value, either 1 or 0, symbolized by a dot):

○ m (MLS): magnetic card reader control
○ c (MCR): magnetic card reader output
○ i (SIH): service inhibit
○ s (SSF): single service flip-flop
○ K (KLS): keyboard LEDs enable
○ D (DEN): display enable

80

○ P (PEN): printer enable
○ M (MFL): magnetic card input flag
○ C (CEO): device control enable output
○ S (STP): stop flag

● Program counter PC (16 bit octal value)
● Instruction OPCODE (16 bit octal value)
● Disassembled instruction

See appendix B for a detailed description of the CPU instructions. All memory addresses
are given as octal values, relative branch values are given as offset to the program counter
(*+n or *-n).
Additionally for BCD arithmetic instructions the contents of the two pseudo registers AR1
(memory address 01744-01747) and AR2 (address 01754-01757) are shown at right of the
instruction. They can be made visible by enlarging the disassembler window. The values
of AR1 and AR2 are given as four hexadecimal 16-bit words.

Figure C-2: Disassembler output showing the arithmetic pseudo registers.

C.2 Usage of the Disassembler

C.2.1 Online Disassembler Mode
The disassembler may be started by clicking on the TRACE button on the left side. Since
the output of each executed instruction takes a certain amount of time, the speed of the
calculator is slowed down significantly. Clicking again on on the TRACE stops the online
disassembler mode.
The disassembled instructions can be inspected using the scroll bar on the right side.
There are a maximum of 4096 lines kept in the window output buffer. Output of one addi-
tional line at the end results in deletion of the first line. The content of the buffer may be
marked by mouse-dragging and copied and pasted in a text editor for later analysis.

81

The output buffer may be completely emptied using the CLEAR button.

C.2.2 Single Step Mode
It is also possible to step through a machine program, either manually or automatically at a
selectable speed. Clicking on the STEP button halts the normal execution and switches
the emulator to the single step mode. The next machine instruction is disassembled but
the execution is delayed until either STEP is pressed again or the number of milliseconds
selected in the drop-down list has elapsed. The default behaviour is infinite waiting for
pressing of the STEP key. This may changed by selecting one of alternative values in the
drop-down list or by keying in an arbitrary integer value.
The single step mode may be cancelled and normal execution resumed by clicking the
RUN button.
The single step mode is automatically activated when a breakpoint or watchpoint condition
is met.

C.2.3 Breakpoints
Breakpoints are locations in a machine program at which the normal execution is automat-
ically halted and the disassembler single-step mode is entered. They can be defined in the
calculator configuration file (see chapter 1.1.7).
Breakpoints can be set for any valid memory address. They become effective only when
the program counter reaches the breakpoint address, not when the corresponding memory
location is read or written by a CPU instruction.

C.2.4 Watchpoints
Watchpoints are locations in the calculator memory which are continuously monitored for
any read or write access by a CPU instruction. There are two types of breakpoints: condi-
tional and unconditional ones. If a memory location is accessed and there is a uncondition-
al watchpoint defined, the disassembler single-step mode is activated. The watchpoint ad-
dress and the current content of the memory location are output to the disassembler win-
dow.
If a memory location is accessed and there is a conditional watchpoint defined, the current
content of that memory location is compared with a test value by a comparison operator
(=, <, or >). If the result is logically true, the single-step mode is activated.
Note: A watchpoint is also effective if the CPU program counter reaches the watchpoint
address.

C.3 Key-Log Mode
To assist in creation of keyboard configuration files the console implements a key-log
mode with which every calculator and PC keystroke is recorded in the console log. To
open the Console window press Ctrl+D.

82

Figure C-3: Console with key-log mode activated.

To activate this mode press the KEY LOG button. The LED below this button is lit when
key-log is active. In key-log mode all keys pressed on the PC keyboard and all mouse
clicks on calculator keys are not sent to the calculator but their corresponding key codes
are output in the console window.

C.3.1 Creating Keyboard Configuration Files
Before creating a new keyboard configuration the console window should be cleared using
the CLEAR button. Click on the calculator window to give it the input focus.
To record one complete calculator / PC key assignment proceed as follows.

1. Decide which calculator key has to be assigned.
2. Mouse-click on the the calculator key. The corresponding octal key code is dis-

played in a new line.
3. Press the desired PC key together with the necessary modifier key(s) (Shift, Alt,

Ctrl). The corresponding decimal key code and modifier shortcuts (S, A, C) are dis-
played on the same line. The equivalent ASCII character is added as a comment.

4. Mistakes can be corrected directly in the console output by mouse-clicking in the
line to be corrected and using the common editor and text keys. Detailed comments
maybe typed behind the semicolon.

5. Repeat from step 1 until all desired calculator keys are assigned.
Finally open an existing or new text file (e.g. the existing keyboard configuration of that cal-
culator) in a text editor of your choice. Then, in the console output, mark all key assign-
ment lines using the mouse or cursor keys, copy them to the clipboard (Ctrl+C), and paste
them to the open text file. The text file should now be saved with the name <Model>-key-
b.cfg in the installation folder of the emulator.

83

	0. Preface
	1. General Features
	1.1 Machine Configuration Files
	1.1.1 Search Strategy for Configuration Files
	1.1.2 Calculator Model Configuration
	1.1.3 ROM configuration
	1.1.4 Empty ROM Slots
	1.1.5 RWM configuration
	1.1.6 Peripheral Device Configuration
	1.1.7 Breakpoint Configuration
	1.1.8 Watchpoint Configuration
	1.1.9 Example Configurations

	1.2 Exchanging of ROM blocks
	1.3 Display of User Instructions
	1.4 Keyboard Configuration Files
	1.4.1 Display of the Keyboard Mapping
	1.4.2 Predefined Keys

	1.5 General Limitations

	2. Implemented Machines
	2.1 HP9830A Personality
	2.1.1 Implemented Features
	2.1.1.1 ROM
	2.1.1.2 RWM
	2.1.1.3 I/O Devices

	2.1.2 Limitations
	2.1.3 User Interfaces
	2.1.3.1 Display
	2.1.3.2 Keyboard

	2.1.4 Internal Devices
	2.1.4.1 Tape Drive

	2.2 HP9820A Personality
	2.2.1 Implemented Features
	2.2.1.1 ROM
	2.2.1.2 RWM
	2.2.1.3 I/O Devices

	2.2.2 Limitations
	2.2.3 User Interfaces
	2.2.3.1 Display
	2.2.3.2 Keyboard

	2.2.4 Internal Devices
	2.2.4.1 Printer
	2.2.4.2 Magnetic Card Reader

	2.3 HP9821A Personality
	2.3.1 Implemented Features
	2.3.1.1 ROM
	2.3.1.2 RWM
	2.3.1.3 I/O Devices

	2.3.2 Limitations
	2.3.3 User Interfaces
	2.3.3.1 Display
	2.3.3.2 Keyboard

	2.3.4 Internal Devices
	2.3.4.1 Printer
	2.3.4.2 Tape Drive

	2.4 HP9810A Personality
	2.4.1 Implemented Features
	2.4.1.1 ROM
	2.4.1.2 RWM
	2.4.1.3 I/O Devices

	2.4.2 Limitations
	2.4.3 User Interfaces
	2.4.3.1 Display
	2.4.3.2 Keyboard

	2.4.4 Internal Devices
	2.4.4.1 Printer
	2.4.4.2 Magnetic Card Reader

	2.4.5 Notes on use of the HP9865A tape drive

	3. External Devices
	3.1 HP9860A Marked Card Reader
	3.1.1 General Information
	3.1.1.1 Configuration

	3.1.2 Usage of the HP9860A
	3.1.3 Reading of HP9810A programs
	3.1.4 Reading of HP9820/21A programs
	3.1.5 Reading of HP9830A programs

	3.2 HP9861A Output Typewriter
	3.2.1 General Information
	3.2.1.1 Configuration

	3.2.2 Usage of the HP9861A

	3.3 HP9862A Plotter
	3.3.1 General Information
	3.3.1.1 Configuration

	3.3.2 Usage of the HP9862A

	3.4 HP9865A Cassette Memory
	3.4.1 General Information
	3.4.1.1 Configuration

	3.4.2 Usage of the HP9865A

	3.5 HP9866A Thermal Line Printer
	3.5.1 General Information
	3.5.1.1 Configuration

	3.5.2 Usage of the HP9866A

	3.6 HP9880A/B Mass Memory System
	3.6.1 General Information
	3.6.1.1 Configuration

	3.6.2 Usage of the HP9880A/B
	3.6.3 Initializing discs
	3.6.4 Note on Usage of the Infotek Fast Basic II ROM

	3.7 HP11202A I/O Interface
	3.7.1 General Information
	3.7.1.1 Configuration

	3.7.2 Usage of the HP11202A
	3.7.3 Saving and Loading of HP9810A programs
	3.7.4 Saving and Loading of HP9830A programs

	4. Installation and Running
	5. Known Issues
	5.1 HP9830A
	5.2 Peripheral Devices
	5.3 Java Issues

	6. The Project
	6.1 Literature and Links

	7. Contributions to the Project
	7.1 Contributors
	A Creation and Execution of Assembler Programs
	A.1 HP9810A
	A.1.1 Coding the Program
	A.1.2 Entering the Program
	A.1.3 Executing the Program
	A.1.4 Example Program

	A.2 HP9830A
	A.2.1 Coding the Program
	A.2.2 Entering the Program
	A.2.3 Executing the Program

	A.3 HP9820A / HP9821A
	A.3.1 Coding the Program
	A.3.2 Entering the Program
	A.3.3 Executing the Program

	B Machine Instruction Set
	C Using the HP9800 Console
	C.1 Disassembler Functions
	C.2 Usage of the Disassembler
	C.2.1 Online Disassembler Mode
	C.2.2 Single Step Mode
	C.2.3 Breakpoints
	C.2.4 Watchpoints

	C.3 Key-Log Mode
	C.3.1 Creating Keyboard Configuration Files

