
Disassembler Window Tutorial
Author: E J Jaquay

This document was prepared to give the reader a quick overview of the new VCC Debugger
Disassembler and how it might be used to study Color Computer machine language programs.
This tutorial demonstrates features available with VCC version 2.1.9.1 and thereafter.

The best way to use this tutorial is to fire up VCC and actually do the steps outlined in this
tutorial but first some background.

The Disassembler Window started as way to use opcode decoder logic that was added to VCC
for the Debugger Execution Trace feature. It was fairly simple to use the decode logic for the
disassembler. It worked reasonably well for DECB programs but not so well for looking at
Nitros9 code. This was because Nitros9 is bank switching memory blocks in and out of CPU
space frequently while DECB for the most part does not.

The disassembler was improved to allow users to use either CPU (0-FFFF) or real (0-1FFFFF)
addressing. This allowed users to view Nitros9 code anywhere in physical memory by either
entering the absolute address or the block and offset provided by Nitros9's mdir command. This
works well except in the case where modules cross block boundaries that are not actually
contiguous in real memory.

Once we could disassemble code we wanted to be able to use the decoded text for debugging.
So the debugger was enhanced to allow setting of breakpoints to track the CPU program
counter when paused.

Basic disassembly

Select "Debugger" then "Disassembler." The disassembler window comes up. In the "Address"
field enter 'A000' (All addresses are entered in hexadecimal) then press the keyboard Enter key
or click on the Decode button. Disassembly text starting from address A000 is shown. (Vcc
should be configured to have at least 512K of memory and DECB running to get this result)

Real vs CPU addressing

The disassembly above is shown using the CPU's view of memory. Sometimes it is necessary to
view real memory. Real memory consists of many 8K blocks. The MMU can map only eight of
them at a time to CPU memory but the disassembler is capable of decoding programs in all of
real memory. To see real memory press the 'M' key. This key toggles the disassembly address
between CPU and real.

The disassembly is changed to show real addresses and the "Real Mem" box is now checked.
Note that simply checking or unchecking the "Real Mem" box does not change the disassembly.

You must use the "M" key to remap.

You can toggle between real and CPU addressing at will by pressing the "M" key however it will
not always work. If the memory displayed is not currently mapped to CPU memory remaping will
fail with an error message.

-

Here while using real addressing I changed the address from 7A000 to 9A000 and tried "M" to
remap and got an error. When I changed the address back to 7A000 the "M" toggle worked
again because that block is mapped to the CPU.

Pausing and viewing code.

By default when the cpu is paused the Disassembler will switch to CPU addressing mode and
then find and highlight the code at the current PC. This lets you see what the software was
doing. This behaviour can be changed by unchecking the "Auto Track" checkbox. The Vcc "F7"
key, "Pause" from the "File" menu, or the Disassembler 'P' key can be used to pause the CPU.

You can view the code that was executing at anytime by starting the Disassembler and pressing
the 'P' key. The screenshot above shows the result if this is done while DECB is at the color
prompt. In the Disassembler the address starting at A7D5 has automatically been decoded. The
blue highlight indicates the program counter address. Pressing 'G' will unpause the CPU. If you

toggle pause several times you will notice the highlight goes away when the CPU is running and
sometimes the PC pauses at A7D3 instead of A7D5.

The Processor State Window

The "Processor State" window shows the current CPU registor values. If you press "I" from the
disassembler window the processor state window will be launched without using VCC's
Debugger memu.

You can use Processor State "Step" button or the Disassembler 'S' key to step through code. If
you keep stepping you can see that the CPU is in a loop that changes the colors of the DECB
cursor. Most of the time the CPU running a timing subroutine that counts the X registor down to
zero.

Setting a breakpoint

With Vcc halted at the DECB prompt set a breakpoint on the RTS instruction at A7D7. Decode
and use the mouse to click on the line containing the RTS and press the 'B' key. The address at
that line will turn red to indicate that there is a breakpoint there. If you press the 'L' key a listbox
will show all the break points that have been set. (Don't worry about remembering all these
keys, clicking on the HELP button will show them)

The "Breakpoints" listbox shows the breakpoint's real address and the original opcode. A
breakpoint can be removed by selecting it and pressing "Delete".

With the breakpoint set at address A7D7 use the "G" or Run button to start the CPU. The CPU
immediatly pauses and the RTS instruction highlight has changed color from red to magneta. It
is that color because the PC is at the breakpoint. Notice that pressing "G" again and again seems
to do nothing but if hold the hold "G" down to auto repeat you should see the DECB cursor
occasionally changing color. What is happening is the CPU is stopping everytime it encounters
the breakpoint at the RTS.

You can step however. 'S' will step one instruction which will execute the RTS to return to the
caller and stop.

The next instruction is another subroutine call. Steping again brings the PC to the first
instruction in that subroutine. The PC is now at the bottom of the disassembly. This is because
the disassembler found the already decoded address and scrolled the text to make the line
visible. You can continue to step though the code and the disassembler will continue to follow
the program counter.

A breakpoint can be removed by selected it in the disassembly screen and pressing 'R' key. Or
use the breakpoints listbox to select and delete it. Also you can press the 'K' key to remove all
breakpoints. Exiting the Disassembly screen will also remove them.

Help Message Box

The "Help" button brings up a brief help message.

Working with Nitros9

Working with Nitros9 can be difficult because it loads modules in real memory then maps them
as needed. In this example we are working with the "Attr" module. Here "mdir -e" shows that
Attr is located in block "A" with an offset of "0". Is is possible that Attr will be loaded elsewhere
on your system but the steps are the same.

Next I started the Disassembler window and checked both the "Real Address" and "Os9 Mode"
boxes. In real memory mode the disassembler allows you to enter addresses as a block number
followed by an offset. It will automatically convert these to the absolute address. So to view the
attr module I entered "A 0" in the Address field. Then I hit enter to get the disassembly. The
disassembler automatically converted my "A 0" to "014000".

This shows one of the features of Os9 Mode, the Module header has been decoded. At address
01400D I can see that this is indeed the "Attr" module. The "Os9 Mode" checkbox enables
module header decoding.

At 014009 I see the execution offset is 007B. I add this to the module start offset (cleverly I
choose a module with an zero offset) and enter the block and offset 'A 7B', in the Address field.

The disassembly now starts at 01407B which is the start address of the Attr module. I set a
breakpoint there.

From Nitros9 I typed in attr. NitrOS9 mapped the page the attr module was in to CPU memory
and ran it. The CPU halted at my breakpoint and the disassembly switched to CPU addressing. I
can now step through the attr code and watch it work.

Here you can see another feature of Os9 Mode. SWI2 instructions have been converted to "OS9"
instructions. 'OS9 #$84' is a system call to open an existing file.

Enjoy!

