THE HARDWARE OF THE KDF9

by BILL FINDLAY
1: KDF9

1.1: BACKGROUND AND OVERVIEW

Announced in 1960, the English Electric KDF9 [Davis60] was one of the most successful products of the early UK
computer industry. Even in an era of architectural experimentation, the designers of the KDF9 were bold and
innovative. The CPU used separate hardware stacks for expression evaluation and for subroutine linkage. Its three
concurrently-running control units shared the work of fetching, decoding, and executing machine code instructions,
synchronized by a variety of hardware interlocks. The KDF9 was one of the earliest fully hardware-secured
multiprogramming systems. Up to four programs could be run at once under the control of its elegantly simple
operating system, the Timesharing Director. Each program was confined to its own core area by hardware relocation,
and had its own sets of working registers, which were activated when the program was dispatched, so that context
switching was efficient. A program could drive I/O devices directly, but was limited by hardware checks to those the
Director had allocated to it.

This paper is one of a trilogy. Companion papers provide a synoptic description of the KDF9’s architecture and
software [Findlay11a]; and a detailed description of the KDF9’s various software systems [Findlayxxx]. Here I focus on
the hardware, especially on the instruction set and its implementation. It may be useful to read [Findlay1l1a] before the
present work, which deepens that account, but it is not in the least necessary, as all essential material is repeated. My
primary sources are EE internal engineering reports [EEC62a, b, c] that are now available on the Internet, and the
nearest thing we have to a KDF9 reference manual: the KDF9 Programming Manual [EEC69].

1.2: AUTONOMOUS UNITS AND THEIR STORES

A KDF9 computer has three primary and many secondary control units, all microprogrammed and running in parallel
with each other, subject to appropriate interlocks. A useful way to think of its large-scale structure is as a community of
cooperating finite-state machines. The whole complex works to the beat of a clock giving two 0.25us pulse trains (P1
and P2) separated by 0.5us.

The primary control units are Main Control (MC), Arithmetic Control (AC), and I/O Control (I0C).

MC takes most of the responsibility for instruction sequencing, including instruction fetching, jumps, subroutines,
and interrupts; for mediating access to the KDF9’s various stores; and for address generation and indexing. The main
(core) store has up to 32768 words, each of 48 bits. The Q Store is a bank of 16 index registers, each of 48 bits. The
Subroutine Jump Nesting Store (SJNS) is a stack of 16-bit return addresses, with maximum depth 17 links.

AC directly executes simple ALU instructions, and delegates to the Multiplier/Divider unit and the Shift unit, for
more complex arithmetic operations. AC operands are taken from, and results returned to, the nesting store (or nest),
which is an expression-evaluation stack with maximum depth 19 words. In addition there is a 1-bit Overflow Register,
typically set when the range of a result is exceeded, and a 1-bit Boolean Test Register.

Note the absence of a conventional ‘program counter’ register. This is explained later.

IOC supervises up to 16 DMA channels (known as buffers in KDF9 terminology) that are capable of simultaneous,
independent transfers. Each buffer operates under the control of its own autonomous microprogram. IOC is responsible
for the Lock-Out Store—one bit to every 32 words of main store, for mutual exclusion of CPU and I/O transfers.

The Lock-Out Store, Q Store, SINS and nest are implemented with the same technology: as core storage with a read
cycle time of 1us and a write cycle time of 1.5us. The main store is comparatively slow, having a read or write cycle
time of 6us, and the architecture of the KDF9 goes to some lengths to mitigate the effect this has on performance.

None of these stores have parity checking.

A hardware timesharing option replicates the nest, SJNS and Q Store, so that four register sets are provided,
thereby obviating the need to save and restore 48 registers when context-switching between a maximum of four
concurrently running processes or problem programs. KDF9 runs under the supervision of a Director program, a set of
privileged routines normally resident at the bottom of store. Its main function is to respond to interrupts, and thereby
provide essential services to problem programs, including management of the timesharing facility. (In the UK computer
parlance of the early 1960s, a ‘timesharing’ system implements multiprogramming, not multi-user interactivity.)

A more unusual type of storage holds the microprogram in the sequence units, which direct the actions of MC, AC
and IOC. The bits in these stores are fabricated by pulse transformers. These are large ferrite toroids, about lcm in
diameter, with multiple secondary windings. When a transformer’s primary winding is pulsed, its secondary windings
emit a variety of control signals.

The fastest storage elements, registers accessed in critical paths, are made from transistor flip-flops. Transistors are
also used in logic gates and as amplifiers for the outputs from core stores and pulse transformers. A KDF9 includes
something on the order of 20,000 transistors—a remarkably low figure for such a sophisticated machine, and testimony
to its philosophy of gaining speed through clever design instead of heroic expenditure on hardware. Perhaps we glimpse
the ghost of Turing, whose computer designs were predicated on exactly the same attitude.

1
© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

1.3: DATA FORMATS

A KDF9 data word consists of 48 bits numbered from DO (the most significant bit) to D47 (the least significant).

Similar big endian numbering is applied to part-word bit fields. Several data formats are supported:

* as a 48-bit, 2°s complement binary integer, fraction, or fixed-point number

¢ as a 48-bit floating point number, consisting of a sign in DO, an excess-128 exponent in D1-D8, and a mantissa in D9
to D47; where the mantissa, together with DO, forms a 2°s complement fraction of 40 bits

* as half of a 96-bit, 2’s complement binary integer, fraction, or fixed-point number, where D48 (DO of the second
word) is set to zero, so that the effective capacity is 95 bits

* as half of a 96-bit floating point number, consisting of sign in DO, excess-128 exponent in D1-DS8, a first part of the
mantissa in D9 to D47, D48 set to zero, and a second part of the mantissa in D57-D95; where D49-D56 are set equal
to (exponent — 39) unless that would be negative, in which case the whole of D48-D95 is set to 0; and where the
mantissa, together with DO, forms a 2°s complement fraction of 79 bits

* as two 24-bit halfwords

* as eight characters of 6 bits each

* as three 16-bit 2°s complement integers that constitute the Counter (C-part, DO-D15), the Increment (I-part, D16-
D31) and the Modifier (M-part, D32-D47) of an indexing word in Q Store format

¢ as a control word for I/O instructions, in which the C-part is a device number; the I-part a main store start-address, or
unused; and the M-part a main store end-address, or an operation count, or unused

Single-precision floating-point results are usually rounded: 1 is added to D47 of the result if the first truncated bit is
not O0; but double-precision results are always unrounded: the truncated bits are ignored. Floating-point results are
always standardised (normalised, so that DO # D9); the only floating point operation that gives a well defined result
from a non-standardised operand is the STAND instruction, which effects normalisation.

There are no double-word fetch or store instructions: double words need a pair of fetch or store instructions to copy
them into or out of the nest. The less significant word of a pair is held in the deeper of its two nest cells.

There are instructions for fetching and storing 24-bit halfwords. Fetching a halfword expands it to a full word in the
nest by filling in the 24 least significant bits with zeros. Storing a halfword from a word in the nest extracts its most
significant 24 bits. A halfword can hold a 24-bit 2’s complement binary integer, fraction, or fixed-point number, or a
floating-point number (the latter consisting of the most significant 24 bits of the 48-bit floating-point format).

I/O devices employ 6-bit characters, up to eight of which can be held in one word; however there are no facilities to
address packed characters in main store. Characters are packed into words beginning at the most significant six bits.
Conveniently, in all the KDF9 character codes, six zero bits represent a blank (space) character; and six one bits
represent a filler character, which legible output devices such as the line printer and Flexowriter completely suppress.
For a full listing of the character codes used by the various I/O devices, see Appendix 4.

1.4: INSTRUCTION FORMATS

A KDFO9 instruction consists of one, two or three syllables of eight bits, the first two bits of each instruction giving its
type, which is 00, for one-syllable instructions, 01, for two-syllable instructions, 10, for three-syllable jumps, and 11,
for ‘directly addressed’ fetch and store instructions of three syllables. Each instruction word is therefore capable of
holding between two and six instructions, dependent on their lengths.

One-syllable instructions do not contain an operand address or other parameter, and operate only on the nest in
‘Reverse Polish’ style. They are carried out by AC (Arithmetic Control). Instructions of two or three syllables are
primarily the responsibility of MC (Main Control). Two-syllable operations include all operations that require one or
more Q Store numbers— ‘indirect’” memory fetches and stores, operations on the contents of Q Stores, shift orders, I/O
orders, and the special JrCpNZS jump instruction. Three-syllable jumps contain a 16-bit instruction address. Directly
addressed fetch and store orders contain a 15-bit word address, and the SET instruction contains a 16-bit constant.

The KDF9 assembly language, called Usercode [EEC69], is very unusual in having a ‘distributed' syntax that
embeds parameters within the Usercode order. For example, the JIOC2NZ instruction means ‘Jump to label 10 if the C-
part of Q Store 2 is Not Zero’. It is possible that this format was suggested by the order code, which distributes opcode
and address bits around the machine instruction in an equally unconventional manner—see Appendix 2.

Usercode instructions are labelled by integers. An asterisk preceding a label forces the following, labelled,
instruction to start at syllable O of a fresh word, any unused syllables of the preceding word being padded with
DUMMY (no-op) instructions. This is necessary for the target label of a JrCpNZS instruction, which does not contain
an address, but jumps to syllable O of the word before that containing the JrCpNZS itself.

2: THE CPU

2.1: MAIN CONTROL, ARITHMETIC CONTROL AND I/O CONTROL

KDF9 comprises two blocks: the I/O block and the Computing block. The I/O block is provided with instructions by the
Computing block, but otherwise works independently, taking priority for access to main store. The Computing block is
composed of MC and AC. MC works collaboratively with AC. They interact most strongly on conditional jumps, where
AC computes the Boolean; on shifts, where MC calculates the shift length and AC performs the shift; and on
fetches/stores, where MC transfers data to/from the store and AC transfers it to/from the nest. The latter, in particular,
does much to compensate for the relatively slow core store.

2
© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

For a fetch operation, MC initiates a store read. A word is transferred from the store to whichever of two fetch
buffers is empty. If both contain data that has not yet been delivered to AC, the transfer is delayed until AC catches up.
The fetch buffers mean that MC can complete up to two fetch instructions, their core cycles being overlapped with
computation by AC. This is particularly valuable in the very frequently executed inner loops that evaluate scalar
products. (KDF9 was very much a ‘scientific’ computer.) For a store operation, MC saves the destination address in a
register; when AC catches up it copies the value from the nest into a store buffer register. When convenient, MC copies
the contents of the buffer register to store. Instruction fetching is also the responsibility of MC. There are two
instruction-word buffers. MC fetches an instruction word to the instruction-word buffer that is not currently being
inspected by AC. Thus instruction-fetching can also overlap with computation by AC.

The art of ‘optimum programming’ on KDF9 is concerned with the careful relative placement of fetch, store, jump
and arithmetic operations, with a view to maximizing the parallelism between store cycles and calculation. In this
respect KDF9 is very like modern CPUs.

2.2: ADDRESSING AND THE Q STORE

Problem programs address their instructions and data starting from a virtual effective address of 0. When store is
accessed, the hardware offsets this address by the program’s starting position in main store. At the same time it checks
that the virtual address does not exceed the number of locations allocated to the program by Director. In Director state
no offsetting is done, so that Director starts at physical location 0.

The address part of a jump instruction consists of a 13-bit word number and the 3-bit number of a syllable within
that word. Consequently, the instructions of a program are confined to its first 8192 words. EXIT (return from
subroutine), EXITD (return from Director to a problem program) and OUT (invoke Director from a problem program)
all have the same basic format as a jump. EXIT’s address part is treated as an offset, to be added to the link in the SINS.

Effective addresses for data fetches and stores are generated in either of two ways: by 3-syllable instructions
containing a 15-bit constant address part and a single Q Store reference, Qg; or by 2-syllable instructions containing
two Q Store references, Qk and Qgq. The effective address in the first case is the sum of the constant and the contents of
Mg; in the second case it is the sum of Mk and Mgq. QO always contains 0, providing a handy way of getting a zero base.

Data locations in EE Usercode have rigidly stereotyped identifiers. Local variables of subroutines have names of the
form Vm; global variables have names of the form Wm, Ym, YAm, ..., YZm. If indexed, the identifier is followed by
‘M’ and the Q Store number; the 2-syllable instructions take the operand form ‘MikMgq’. Usercode instructions such as
V9; YATM2; M1IM2; and so on, represent data fetches that push values onto the nest; =V9; =YA7M2; =M 1M2; and so
on, represent data stores that pop values from the nest.

Flags suffixed to the instruction optionally specify index updating, halfword addressing, and ‘next word’ addressing.

The ‘Q’ suffix causes the Qg register to be updated, after the effective address is determined, by adding the contents
of Ig to Mg and decrementing the contents of Cq. This allows stepping through a predetermined (but variable) number
of locations, at addresses given by an initial address and a predetermined (but variable) stride. There are conditional
jump instructions that test whether the C-part of a Q register is (non-)zero, providing for very efficient counting loops.

The ‘H’ suffix, on a 2-syllable fetch or store order, causes the operand accessed to be a halfword. In this case the
content of Mk is taken as a base word address, and the content of Mg is taken as a halfword offset, odd-numbered
halfwords being those in D24-D47 of the addressed word.

The ‘N’ suffix, on a 2-syllable fetch or store order, causes the accessed word to be at an address 1 greater than usual
(i.e., the next word). This allows efficient processing of arrays of pairs of elements stored sequentially in adjacent
words —such as the constituent words of a double-precision number—since Qg needs to be updated only once for every
word pair, using an increment part set to 2. All combinations of Q, H, and N, in that order, are permitted in a 2-syllable
fetch or store order.

The 3-syllable fetch and store orders take 6us, the 2-syllable fetch and store orders take 7us, and an additional 1yus is
needed for Q register updating in both cases. It is merely coincidental that the time taken by 3-syllable fetch and store
orders is the same as the main store read/write cycle time—the core store cycle does not begin until 1.5xs-3.5us after
the start of the instruction and the 6us it takes is not included in the total, as it overlaps with following instructions.

2.3: EXPRESSION EVALUATION AND THE NEST

An adder associated with the Q Store carries out the arithmetic involved in Q Store updating and in computing effective
addresses. All other calculations, both fixed-point and floating-point, involve the nest. It is common for parameters of a
subroutine to be supplied in the nest, especially when the routine implements an arithmetic function.

The top three cells of the nest (N1 at the top, then N2 and N3 as we go deeper) are held in three flip-flop registers.
The N registers are managed, transparently to problem programs, by a combination of hardware logic and Director
software. When a value is pushed onto the nest, hardware saves N3 in the nest’s core stack, N2 in N3, N1 in N2, and the
new value in the vacated N1. Popping a value is the simple converse.

At most 16 nest cells are available to a program. The Nest Over-/Under-flow Violation (NOUV) interrupt happens
after pushing a 17th value, or after popping an empty nest. Since an interrupt is not effected until it is convenient for
MC, AC may have performed several further nest operations, leaving the contents of the nest unpredictable.
Consequently, no recovery from NOUYV is possible for a problem program.

Keeping track of nest depth is one of a KDF9 programmer’s main chores, and NOUV interrupts are among the most
common results of programming error. In a modular program with deeply nested subroutines it can be difficult to

3
© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

ensure that NOUV is always avoided. Routines can save (on entry) and restore (before exit), all or part of the nest
contents; they are helped in this by conditional jumps that test whether the nest is empty (JrEN) or not (JrNEN).

It often happens that the order of operands in the nest, while convenient for some purposes, is inconvenient for
others. To reorganize the nest, we have the 1-syllable instructions:

*REV:a,b,...—b,a, ...
*DUP:a,...—a,a,..

*ERASE: a,... — ...
*CAB:a,b,c,... —c,a,b, ...
*PERM: a,b,c,... —>b,c,a, ...
*REVD:a,b,c,d,...—c,d,a,b, ..
*DUPD: a,b,... > a,b,a,b, ...

Simple instructions—including integer +, —, AND, OR, REV, DUP, ERASE, efc—take from 1us to 4us, 2us being
typical. Floating-point addition takes from 7us, multiplication takes from 14us, and division takes from 36us; the
variation being due to data-dependent operand alignment and result normalization. Overflow is set on division by zero
and when a numerical result is outside the range of the result type. It remains set until explicitly cleared.

The 1-syllable ZERO and the 3-syllable SET allow for the sourcing of small constants. The most efficient way to
push -1 is: ZERO; NOT; and the most efficient way to get +1 is: ZERO; NOT; NEG;—the same number of syllables as
SET 1; but slightly faster. Subtracting 1 is best done by: NEG; NOT; and adding 1 by: NOT; NEG. It is nice that these
‘hacks’ set the overflow in exactly the same cases as SET 1; +; or SET 1; —;.

Some more unusual operations include SIGN, which replaces N1 with —1, 0, or +1, according to its sign; MAX,
which arranges that N1=N2, setting overflow if they were exchanged; and BITS, which replaces N1 with a count of the
number of 1-bits it contained (it is interesting to speculate that BITS may stem from Turing’s cryptological work). TOB
yields a binary integer from a mixed-radix integer and a radix pattern; and FRB does the converse. For a full list of
instructions, with execution times, see Appendix 1.

2.4: CONTROL FLOW AND THE SJNS

The Jr instruction is an unconditional jump to the instruction at label r. The instructions: Jr=Z, Jr£Z, Jr>Z, Jr=7, Jr<Z,
Jr<Z test the sign of the top cell of the nest; to compare the top two cells of the nest we have: Jr= and Jr#. All of these
pop N1 whether they jump or not; Jr= and Jr# do not pop N2, being the only dyadic operations with this behaviour. To
test whether Cq is (non-)zero we have: JrCqZ, JrCgNZ, and JrCgNZS. The JrV and JrNV instructions are conditional
on the Overflow Register being (un-)set, while JFTR and JrNTR are conditional on the Test Register being (un-)set.
Jr(N)V and Jr(N)TR clear the designated register, whether they jump or not.

JrCgNZS is known as the short loop jump. It jumps, if Cq is nonzero, to syllable O of the instruction word that
precedes the word containing the JrCgNZS instruction; and has the further effect of inhibiting instruction fetch cycles.
Thus the loop executes entirely from the instruction word buffers, with no overhead for instruction fetches. Important
algorithms, such as scalar product and polynomial evaluation, fit comfortably into the 12 available syllables.

The JSr instruction branches unconditionally to the instruction at label r, and pushes its own address onto the SINS
as a return link. This creates issues of SINS management similar to those that arise with the nest, and the instructions
JrEJ and JrNEJ are provided analogously to JrEN and JrNEN. The only other instructions that access the SINS are:

* EXIT a: complementary to JSr—pops the link from the SINS, adds the constant a (which is an integral multiple of
three syllables), and branches to the resultant address

* OUT: pushes its own address onto the SINS and causes an OUT interrupt, thereby switching control to Director

* EXITD: complementary to OUT, but also used when context-switching—pops the link from the SINS and branches to
the resultant address in program state, with interrupts enabled on completion

* LINK: pops a link from the SINS and pushes it onto the nest

* =LINK: pops a link from the nest and pushes it onto the SINS

Normal return from a subroutine is effected by EXIT 1; if there is an abnormal return path, it is taken by EXIT 1;
and EXIT 2; is the normal return. Switches are programmed by putting the index into the SINS, by means of the =LINK
instruction, then the EXIT ARr instruction jumps to the selected word in the jump table starting at label r.

All interrupts, like OUT, use the SINS for their return address.

3: INPUT/OUTPUT

3.1: PERIPHERAL DEVICES
Up to 16 I/O buffers can be fitted. Each has its own independent control unit, which is microprogrammed to support its
connected device. The monitor console Flexowriter is always on buffer 0, and a paper-tape reader with hardware
bootstrap facility is always on buffer 1. Communication with the operators is by means of messages typed on the
Flexowriter, which has a button that is pressed to gain the attention of Director by causing a typewriter interrupt.
(Merely using the keyboard does not cause an interrupt.)

Peripheral devices fall into two classes: slow, or character devices; and fast, or word devices. Buffers for slow
devices do a core cycle for each character transferred; fast device buffers do a core cycle for each complete word.

The slow devices include the Flexowriter (10ch/s), paper tape punches (110ch/s), paper tape readers (1000ch/s),
card readers (10 card/s), card punches (5 card/s), graph plotters (200 step/s), and line printers (15 line/s).

4
© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

The native KDF9 paper tape code is rather odd, and makes poor use of the eight punchable locations, or ‘channels’,
in a tape frame. Channels 1-4 and 6-7 encode the six-bit character and channel 5 establishes even parity for the whole
frame. But channel 8 is used only to distinguish completely blank tape from the space (SP) character, which has the all-
zero code. (Since SP has even parity it would otherwise be represented by a frame with no punching.) Blank tape, and
erased tape with all channels punched, are treated as content-less leader or trailer. In normal input modes they are
skipped over by the buffer and not transferred. These peculiarities are inherited from the offline Flexowriter tape-punch
stations used for data preparation and for the transcription of output tapes to typed copy.

The paper tape code has ‘Case Shift’ and ‘Case Normal® characters to expand the character set. Flexowriters treat
them literally—on receiving a Case Shift character, they shift up the type bars so that an alternative glyph can be
printed for each code. For example, the data ‘Bill Findlay’ would be punched on tape as ‘BBILL AFBINDLAY’,
where I have used B to denote the non-printing Case Shift and fi the non-printing Case Normal. Transcribing a tape
containing the characters ‘BBILL AFBINDLAY’ types out the text ‘Bill Findlay’.

Calcomp drum plotters (models 563, 564, 565 and 566) are an option. They are attached to tape punch buffers,
which are manually switchable between punch and plotter. An I/O instruction is provided to test the position of the
switch. The plotter takes 6-bit codes that move the pen and/or the paper by one step of fixed size at a time. Strangely,
only one diagonal direction is available in a single code; a step on the other diagonal requires separate pen and paper
steps. Depending on the particular Calcomp model, steps are of size 0.01 or 0.005 inches, and are taken at the rate of
200 steps/s. Commands to raise or lower the pen take 0.1s. The paper is a roll up to 120 feet in length, and either 11
inches or 29.5 inches wide.

Card readers and punches have two modes of operation. In the ‘alphanumeric’ mode each column corresponds to
one character and is encoded or decoded accordingly. In the ‘direct’ mode the 12 rows of each column correspond to
the 12 bits of two characters and are transferred literally. Line printers use a subset of the alphanumeric card code.

The fast devices are magnetic tape decks, fixed-disc drives, and drum stores.

The magnetic tape physical format uses 16 tracks across the tape: six data tracks, a parity track and a clock track are
duplicated for each character. A character is valid if either copy can be read without error. Tapes run at 100inch/s, with
400ch/inch, for a transfer rate of 40kch/s. Inter-block gaps are about 8-9mm long. A faster, but seldom seen, magnetic
tape deck runs at double speed (80Kch/s), recording on a steel band instead of plastic tape.

The fixed-disc drive has 16 disc platters, each about 31 inches in diameter. Disc blocks hold 40 words (320
characters); there are 16 blocks per track in an outer recording zone (further from the spindle) and eight per track in an
inner zone. The discs spin at 1000 rev/min: the transfer rate in the outer zone is about 85Kch/s, but only half that in the
inner zone. Fixed heads are mounted in the outer zone of the first platter, providing access without a seek to a small set
of the fastest tracks. Each platter also has its own independent arm, which carries eight read/write heads. Both surfaces
of a platter have two heads in the inner track zone and two in the outer zone, so that 96 blocks are available without a
seek. Seeks take from 156ms to 367.5ms, with an average of 231ms. The heads can be moved to 64 different positions,
giving a capacity of 6144 blocks per platter, or 98304 blocks (31,457,280 characters) per drive. Up to four drives can be
attached to the disc buffer, special provision being made for this in its microprogram.

The drum consists of 320 addressable sectors, each of 128 words, for a total of only 40960 words of storage,
accessed at a transfer rate of 500kch/s. It is of use mainly for storing frequently executed programs, such as the program
source editors and compilers. Few were deployed.

3.2: I/O INSTRUCTIONS
There are two significant aspects to the software control of I/O devices on KDF9: their allocation to problem programs
by Director, and their control by problem programs once allocated.

Programs can directly drive I/O devices on buffers allocated to them by Director. Any attempt to access an
unallocated buffer causes a Lock-In Violation (LIV) interrupt, and termination of the program. This feature of KDF9
means that programs are inherently device-dependent: they must contain logic specific to the type of device they use.
This is less of a disadvantage than it might seem, because card reader/punches, paper tape reader/punches, and printers,
all use somewhat different characters sets; so programs have to be device-aware for that reason, if no other.

Though program logic is coupled to device type, it is decoupled from device identity. To obtain access to a device, a
program asks Director to allocate it one of the type. If such a device is available, Director allocates it to the program and
returns its buffer number in N1. The program must save this number for future use.

The instructions that control devices take their parameters from a designated Q Store, Qgq. Cq contains the buffer
number of the device. (For the fixed disc system, Cq also contains the seek area number, the platter number and the
drive number, taking up all 16 bits.) Depending on the specific instruction, Ig and Mg might contain starting and ending
virtual addresses for a data transfer operation, the transfer count being determined by their difference; or Mg might
contain a repetition count for a control operation; or Ig and Mg might both be ignored.

If the least significant bit of an I/O instruction is 1, it sets the device off-line before initiating the operation. The
device is only set on-line by the operator pressing a button on its control panel. In this way a program can set up a
transfer on a tape reader, for example, which waits until the operator has loaded a tape before attempting to read.

After checking its validity, MC delegates an I/O instruction to its specified buffer, via IOC; if it is a data transfer
instruction, MC also provides physical addresses converted from the virtual addresses given in Ig and Mg.

There is some attempt at making the effect of a given instruction generic, so that PIAQgq, say, acts in a similar way
on all input-capable devices, but this is not carried through with complete consistency. Some simpler devices respond to
different orders in the same way: PIAQq and PIEQgq, for example, have the same effect on a paper tape reader.

5
© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

A completely generic feature of the I/O architecture is the provision of variable length transfer instructions. These
take a (maximum) transfer count, as usual, but terminate early upon transferring an End Message character (written
‘—’, code 755). When a variable-length read terminates on End Message, any remaining character positions of the last
word transferred are set to zero (a SP character). In the case of fast devices, when a variable-length write terminates on
End Message, any remaining character positions of the last block transferred are set to zero on the output device.

Another feature, generic to the slow devices only, is the availability of the misnamed character transfer option.
These instructions read one character into, or write one character out of, the least significant bits of each word in the
transferred area. This is the only I/O mode that permits the transfer of an arbitrary number of characters without the side
effect of termination on End Message. When applied to paper tape, character mode further allows for all eight bits of a
frame to be read or written, so that foreign codes can be handled (at the cost of forgoing hardware parity checks).

A peculiarity of the online Flexowriter is that, when a semicolon is written, the write operation changes itself on-
the-fly to a read operation; subsequent typed input is transferred to the originally designated output buffer, in character
positions following the semicolon. This can be used to program an atomic, prompt-and-response, form of interaction.

The PMxQgq instructions provide control operations, such as rewinding a magnetic tape or initiating a disc arm seek.

Several instructions enable device-dependent state (e.g., whether a magnetic tape is positioned at the Beginning Of
Tape window) to be transferred to the CPU’s Test Register; these instructions are also encoded in the PMxQgq group.

PARQg and BUSYQgq both transfer state from a buffer to the Test Register. BUSYQgq checks whether a buffer is
presently engaged in a transfer. PARQgq checks and clears a parity error flag on a buffer’s last completed transfer—any
other command to a buffer with an uncleared parity error causes a LIV interrupt.

The Usercode programmer is given multiple, device-specific mnemonics for each hardware I/O instruction. For
example, the output instruction POAQgq can also be written as MWQg when the intended output device is a magnetic
tape drive, and as TWQgq when it is the console typewriter. The use of a specific mnemonic has no significance at run
time; effectively it acts like a comment appended to an unspecific mnemonic in the source program.

Only a fraction of many possible I/O opcodes have defined effects. Moreover, some are defined only for one class of
device (input or output). Attempting an undefined I/O operation causes a LIV interrupt. See Appendix 3.

3.3: I/O-DRIVEN MULTIPROGRAMMING
Program blocking by I/O operations is automatically managed by IOC, using a 12-bit Program Hold-Up (PHU)
register for each of the four program priority levels.

While an I/O transfer is in progress, its core store area is locked out by the buffer, so that any attempt to access it
concurrently, whether to fetch or store data, to fetch instructions, or use it for another I/O transfer, causes a Lock-Out
Violation (LOV) interrupt. Attempting an I/O operation on an already-busy buffer also causes a LOV. In response to a
LOV, Director suspends the responsible program. One bit of the Lock-Out Store is associated with each group, or
block of 32 words, so for greatest overlap it is important to ensure that I/O areas are aligned on 32-word boundaries.

The PHU registers are constituted as follows:

* PHUn:D11 is set if program level is held up.
o If PHUn:D10 is 1 then PHUn:D6-D9 contain the number of the buffer on which program level n is waiting.
o If PHUn:D10 is O then there is a core lock-out in effect and PHU#:D0-D9 contain the number of the locked-out group.

A buffer records the CPU’s privilege state at the start of a transfer. On completion, if Director started the transfer,
IOC requests an End of Director Transfer (EDT) interrupt; but if the transfer belonged to a problem program, its PHU
is cleared. If the cleared PHU belongs to a program of higher priority than the one currently running, IOC requests a
Program (PR) interrupt. Since a suspended program may be waiting on a shared device (typically, the Flexowriter)
made busy by a program of lower priority, every other PHU is then examined to see if it refers to the same buffer. If so,
an EDT interrupt is requested instead of PR. This enables Director to take suitable action to resolve the priority
inversion over the shared device.

Applying an INTQgq instruction to a busy buffer also causes a PR interrupt, effectively yielding the CPU to a
program of lower priority; applying INTQgq to an idle buffer has no effect. PHUn:DO is set to 1 if an INTQgq instruction
is responsible for program level n being held up.

3.4: I/0 CONTROL

IOC provides the interface between the CPU and the I/O devices on their buffers. It contains three sequence units. The
ESU1 and ESU2 units provide a conduit for the transfer of data between main store and the buffers. The RSU initializes
and finalizes I/O transfers, manages the Lock-Out and PHU Stores, and passes the parameters of the I/O instruction to
the relevant buffer. At the end of the transfer the RSU requests the appropriate interrupt from MC.

The C Store provides one 48-bit word for each buffer. It contains the transfer’s initial, final and current word
addresses, the 2-bit priority level at which the transfer was requested, and a flag for Director transfers. The initial
address is retained to allow a fast-device operation to be restarted automatically should a parity error be detected during
the transfer. Slow device buffers use those 15 bits for different purposes: they hold the next character position within
the current word, and indicate transfer options such as ‘character’ mode.

The E Store is a 16x4-bit FIFO that the buffers use to request service from IOC. When it needs attention, a buffer
inserts its device number at the end of the E Store. The ESUs take the buffer number at the head of the FIFO, using it to
select a C Store and so discover what needs to be done. The IOC can be seen as a multiplexor channel, in more modern
language, capable of both byte and word transfers, but not having a ‘burst’ mode, locked on to a single device. The total
I/O rate of the maximum complement of EE devices (8 of the faster tape decks, a disc drive, and a drum store —slow

6
© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

devices are irrelevant) does not exceed the bandwidth of the core store, so burst mode is not needed. However, one
installation [WR67] did modify the E Store mechanism to allocate store cycles on a priority basis, with higher priority
for faster devices, their motivation being the need to connect a very fast non-standard device.

4: DIRECTOR STATE

4.1: INTERRUPTS
KDF9 interrupts may be either voluntary (OUT or INTQg obeyed by the problem program); inadvertent (illegal
instruction, nest over-/under-flow, etc); or housekeeping (monitor typewriter, clock and I/O device interrupts).

The special register RFIR (Reason For Interrupt Register) records the currently requested interrupt(s). RFIR is
inspected from time to time by MC. When an interrupt is accepted, control branches to word 0 of Director, leaving an
instruction address in the top cell of the SINS. On entry to Director state, NIFF (Non-Interrupt Flip-Flop) is set to
inhibit further interrupts, but not their recording. However, the RESET interrupt is never inhibited and the NOUV
interrupt is completely suppressed. NIFF is also, in effect, the Director-state flag, so that an interruptible Director mode
of execution does not exist.

When fetched by the privileged K4 instruction, RFIR is automatically cleared. K4 delivers the following to N1:

* D0-D15: CLOCK COUNT; the integer in DO-D15 is incremented every 32us; a CLOCK interrupt occurs when
overflow from D1 sets DO, but if DO is already set a RESET interrupt occurs instead

* D22: the PR interrupt is caused by the end of a peripheral transfer started by a program of higher priority than the
program currently running; the PR interrupt is also caused by an INTQgq instruction applied to a busy device

» D23: the FLEX (Flexowriter) interrupt is caused by the interrupt key on the console typewriter

e D24: the LIV (Lock-In Violation) interrupt is caused by an illegal or privileged instruction, by the use of an
unallocated peripheral, by store address wraparound, or by a negative effective address

* D25: the NOUV (Nest Over- or Under-flow Violation) interrupt occurs when an attempt is made to overfill an
already-full nest or SINS, or to pop an already-empty nest or SINS

* D26: the EDT (End of Director Transfer) interrupt occurs at the end of a peripheral transfer initiated by Director, or if
a priority inversion has been detected among programs currently locked-out and waiting for a shared device

* D27: the OUT (system-call) interrupt is caused by the OUT system-call instruction

* D28: the LOV (Lock-Out Violation) interrupt is caused when a program attempts to access any of a locked-out group
of 32 words, or when it attempts to command a busy peripheral device other than by INTQgq

* D29: the RESET interrupt is caused by jumping to an invalid syllable address (6 or 7), or by a watchdog ‘double
clock’ (implying that a previous CLOCK interrupt has not been handled by Director in the intervening time)

If a store-access instruction with Q Store updating experiences a Lock-Out Violation, the Q register update is
suppressed. When the lock-out clears, and the interrupted program is resumed, the instruction can be retried without
doubly updating the Q register.

4.2: NESTING-STORE MANAGEMENT BY HARDWARE AND DIRECTOR

The nest depth is represented by a 5-bit counter register. Its least significant four bits provide the address of the cell to
be accessed in the nest’s 16-word core stack. NOUYV is signalled in program state when a push completes with the depth
equal to 16+1=21,, and when a pop completes with the depth equal to 0-1=37;. Since NOUV is completely suppressed
when Director is running, it can use all 19 nest cells—the 16 in the core stack and the three flip-flop registers, N1-N3.

Director exploits this to great advantage in its ‘short-path’ interrupt handler, which is simple enough to be able to
work entirely in the N registers, and does not need to save the interrupted program’s whole nest to make room for itself.
Only the values left in the N registers by the interrupted program need to be saved (in the core stack). This makes
context switching in response to PR interrupts rather efficient, the time consumed between interruption and re-entering
a program being of the order of 320yus, or about 60 instructions. The ‘long path’ through Director, where more complex
work is done, must save many of the interrupted program’s registers; but that happens relatively infrequently.

To maximize hardware speed in a critical path, the destructive reading of a cell in the nest core stack is not followed
by a write cycle to restore the contents; so reading a cell also clears it. As the nest is a strictly LIFO store, this is not a
problem: no attempt can be made to read the cleared value a second time.

Similarly, and again for speed, writing to a cell in the nest core stack is not preceded by a read cycle to clear it; so
the written bit pattern is effectively OR-ed into the cell. This is valid only if the cell contained zero before the write
cycle. Therefore, before entering a program for the first time, Director completely empties its nest—not merely setting
the depth to zero, but explicitly clearing the contents. The ERASE order pops the nest, forcing a destructive read from
the core stack into N3. By performing enough ERASE orders, Director can ensure that all 19 nest cells are completely
zeroized. Subsequent pushes, to a depth less than four, leave the state of the core stack unchanged, although the nest
depth increases. The first push that increases the depth to four may cause a non-zero value to be saved in the core stack
(at cell 3). This leaves cells 0-2 clear, even when the nest depth reaches 16, the most allowed to a problem program.

Director’s short-path interrupt handler saves N1-N3 at zero cost, as a side-effect of pushing three of its own values
onto the nest. There is always room for N1-N3 in the core stack—at worst, in cells 0-2. Before returning to an
interrupted program, Director performs three ERASE orders, thereby restoring the values that N1-N3 contained before
the interrupt. If the interrupted program’s nest depth was less than three, one or more non-significant zero words will be
fetched into the N registers; since the NOUV interrupt is suppressed in Director, no harm results. The round-trip cost of
preserving the nest in the short path is therefore just three ERASE orders, taking 3us.

7
© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

If a program causes a NOUYV interrupt by overfilling the nest, cells 0-2 of its core stack might be corrupted; but this
does not matter, because the program cannot be allowed to continue unless the nest and SINS are re-initialized.

There is one weakness in the implementation of the nest—the depth is checked only after it changes. A consequence
of the reasoning described above is that, for correct LIFO operation, N2 must be clear when the nest depth is 1. But
REV, for example, can be executed when the depth is only 1, and may swap a non-zero value into N2 without a NOUV.
Two pushes later this non-zero value enters the core stack, changing the pristine O in cell 2, so that a future write into
that cell will be corrupted. However, a program that commits such a gross error is likely to soon attempt a dyadic
operation, and will fail at that point. In any case, it affects only itself, and only by making its debugging more difficult.

The implementation of the SJNS is very similar to that of the nest, with a similar division of responsibility between
hardware and software. The Jump Buffer, a single flip-flop register analogous to the nest’s three N registers, constitutes
the 17th cell of the SINS. It ensures that interrupts can be taken when the SINS is full, and it promotes the efficiency of
the Director’s short path. NOUV is caused after a program pushes a 17th link, and after it pops an empty SINS. The
excess link left in the Jump Buffer by a 17th push is overwritten by the NOUV interrupt’s return address. Again, this
does not matter, because the program cannot be allowed to continue unless the nest and SINS are re-initialized.

4.3: DIRECTOR-ONLY REGISTERS AND INSTRUCTIONS
Several special registers, concerned in multiprogramming, are accessible only to Director, although they exercise their
influence on the running of problem programs.

The Base Address (BA), a 10-bit register, contains the number of the 32-location group of words at which the
program starts. It is added to the top ten bits of virtual addresses to effect dynamic relocation. The Number Of
Locations (NOL), also a 10-bit register, contains the BA-relative group number of the highest addresses the program
can validly access. I/O instructions specify virtual addresses in Ig and Mq. MC checks that Ig < Mg, checks that both
are compatible with NOL, and adds to both the value in BA, before passing them on to IOC. A failed check causes a
LIV interrupt. On entry to Director BA is set to 0, so Director runs at the bottom of core. Strangely, NOL is still
compared with effective addresses in Director state; Director must set NOL to the maximum for the machine, if it wants
to guard against causing a LIV interrupt when accessing main store above its own upper limit.

The Current Peripheral Device Allocation Register (CPDAR), a 16-bit register, has one bit for each buffer. If a
bit is set, the program can validly command the corresponding buffer; if the bit is clear, any such attempt causes a LIV
interrupt. The Current Priority Level (CPL), a 2-bit register, holds the hardware dispatching priority of the program.

These registers contain values that are proper to one running program, and Director must set them accordingly
before (re-)entering that program. The hardware timesharing option provides four instances of the nest, Q Store and
SINS. On context switching between programs, Director can switch quickly between instances by changing the active
set number, but must separately save and restore the nest depth, the SINS depth, BA, NOL, CPL, CPDAR, and the
Overflow and Test registers.

There are four of the PHU (Program Hold-Up) registers. For scheduling reasons, Director might want to change the
priority level of a program. Since a program’s priority fixes the PHU that is used by the buffers to update its dispatching
status, Director must wait for all of its I/O transfers to terminate before assigning it to a different priority.

Instructions to manipulate the special registers are available only in Director state. They are:

* EXITD: clear NIFF and jump to the address in the top cell of the SINS; interrupts are inhibited throughout the
execution of EXITD, to allow the machine to adopt a stable state

* CLOQgq: clear any lock-outs for the area specified by Ig and Mg, and clear PHUn, where n is the current value of CPL

* TLOQgq: test the area specified by Ig and Mg, setting the Test Register if any of the encompassed groups are locked

out

CTQgq: terminate device activity and clear lock-outs for the transfer specified by Qg

=KO: if N1 # 0 then switch buzzer on else switch buzzer off end

=K1: copy bits N1:D24-D33 to NOL, bits N1:D34-D35 to CPL and bits N1:D38-D47 to BA

=K2: copy bits N1:D32-D47 to CPDAR, where N1:D32 corresponds to buffer 15 and N1:D47 to buffer O

=K3: switch to a new Q Store/nest/SINS set, with N1:D0-D1 as the new register set number, N1:D2-D6 as the nest

depth and N1:D7-D11 as the SINS depth

* K4: push CLOCK/RFIR onto nest.

* K5: push PHUi:D6-D11 onto nest, for i in 0..3, with PHUO:D6-D11 in N1:D0O-D5, PHU1:D6-D11 in N1:D6-D11,
PHU2:D6-D11 in N1:D12-D17, and PHU3:D6-D11 in N1:D18-D23.

* K7: push the current register set number and nest depths, as represented for the =K3 instruction.

The =K3 instruction must be followed by at least six DUMMY instructions, since it needs 6us to take effect and
during this period the machine is in an indeterminate state. All =Kk instructions copy N1, and do not pop it.

Note that register sets are numbered independently of program priority levels. If Director exchanges the priority
levels of a pair of programs, it does not need to swap the contents of their register sets.

Two other Director-only instructions have to do with I/O: PMGQgq and PMHQg do not seem to have more specific
Usercode mnemonics, and the machine code for PMGQq is not yet definitely known.

The semantics of PMHQgq are clear: it is a ‘set lock-out’ instruction, the complement of CLOQgq. It is used in
Director to lock out an area of core as it would have been by a data transfer, but without actually setting up a transfer.

PMGQgq does not seem to be used in any extant Director, although it is attested in marginal notes taken during a
KDFO9 training course, where it is described as ‘read C Store’. Perhaps it was used in I/O diagnostic programs.

8
© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

S: MAIN STORE ORGANISATION

Main store is composed of modules of 4K words, each consisting of four 1K blocks. A block consists of 48 core planes

of 32x32 bits (the Z, X and Y directions, respectively), the whole organised as follows.

Registers associated with the main store include the 15-bit main-store address register (MSAR) and the 48-bit main
buffer (MSB). The most significant three bits of MSAR give the module number, the next two give the block within the
module, the next five give the X-line and the last five the Y line. A series of decoding matrices interpret each of the
fields, giving access either to a further matrix, or, eventually, to the X and Y lines themselves.

The read sequence operates as follows:

1: the matrix system is pulsed to select the X and Y wires. The cores that flip produce a detected signal in the readout
wires, which are organised one per XY plane, per module. The output from the read amplifiers is transferred to MSB.
If reading is to be inhibited on certain planes (i.e. for a halfword access), an inhibit current cancels the effect of the X-
line current and the cores on those planes do not flip.

2: A side effect of the read step is to clear the addressed word, which must therefore be rewritten from MSB. Again the
inhibit wires may come into play to safeguard an un-accessed halfword.

The complete read/restore operation is a core cycle and takes 6ys.

The write sequence is essentially similar. Step 1 prepares the word by setting it to zero. Step 2 ORs-in its new value,
the inhibit wires being used as before to prevent unwanted overwriting during halfword accesses.

6: MICROPROGRAM SEQUENCING

The sequence unit directing a KDF9 subsystem is a finite-state machine. Each state transition emits microprogram
control pulses to initiate primitive hardware micro-operations, such as register—to—register transfers. It also emits a new
state value that is fed back to the sequence unit. Control and state outputs may be dependent on input signals, allowing
for conditional microinstructions and for microprogram looping.

The MC sequence unit, for example, is similar to that used in AC. It has two 8x8 arrays of pulse transformers, and
two 6-bit microinstruction registers (MIS1 and MIS2). Activated by a P1 pulse (0.25us, every 1us), the contents of
MIS1 are decoded to select one of the transformers, which then has its primary winding pulsed: six of its secondary
windings respond with outputs that are used to set a successor microinstruction in MIS2. MIS2 similarly puts a new
microinstruction into MIS1 on a P2 pulse (like P1, but 0.5us later). Alternating between MIS1 and MIS2, the sequence
unit steps through a microcode procedure that effects the MC contribution to a KDF9 machine code instruction.

As well as their state outputs, the transformers also generate up to two control outputs that trigger micro-operations
within MC. Up to four micro-operations can therefore be commanded in each 1us clock cycle.

Secondary windings can be connected to signals from other parts of the machine, to make their output dependent on
conditions external to the sequence unit. For example, we can deduce that at least one transformer taking part in the
Jr<Z microcode has at least one output that depends on N1:DO (the sign bit of the number at the top of the nest).

The sequence unit technique is very flexible, and offers many opportunities for context-dependent optimization of
the transformer arrays. Within an array a given transformer need only be wired with those signals necessary for the
effect wanted. A single transformer can used as part of more than one microprogram sequence, with varying effects
being conditioned by control signals connected to its secondary windings. Arrays can be configured with just enough
transformers for their tasks. This all results in significant economies. For example, the sequence unit for a tape punch
buffer contains two arrays of only five transformers each, addressed by 3-bit microinstruction registers.

A basic KDF9, ignoring I/O buffers, uses eight sequence units. MC has one, AC and IOC have three each, and the
core store has one to sequence read/write cycles. A fully-specified machine with 16 I/O buffers has no fewer than 24.

7: MAIN CONTROL

The instruction currently being obeyed by MC is held in a 27-bit register called the instruction staticizer (INS). INS
contains three whole syllables, the first two bits of the following syllable and the first bit of the syllable after that. (AC
on the other hand only examines the first syllable of any instruction and so has a 1-syllable staticizer called AINS.) The
outputs from INS are used to feed a decoder matrix developing 46 ‘function levels’ which initialize the MIS1 register in
the MC sequence unit. That is, they specify entry to different points of the MC sequence unit’s microprogram; these are
the ‘S’ numbers listed in Appendixes 1 and 2.

MC is responsible for all two- and three-syllable instructions. Therefore it is responsible for initiating main store
cycles, for Q Store operations, for initiating transfers to and from nest, for setting up jumps, for maintaining the SJNS,
for initiating I/O operations, and for dealing with interrupts. Instructions that do not involve the nest are implemented
entirely by MC, with no participation by AC. Instructions that do involve the nest are executed co-operatively by MC
and AC, using buffer and interlock registers to synchronize their actions. These registers are many and various; only the
most important are identified in the following.

To implement a write into main store, MC copies the destination address to the Store Buffer Address Register
(SBAR); the cycle is initiated after the Store Buffer (SB) is set with a value by AC, at a time when MC next encounters
a main store operation.

To implement a read from main store, MC fills MSAR with the source address. If MSAR = SBAR at that point, SB
is immediately copied to MSB, thus eliminating a redundant core cycle; otherwise MC initiates a read cycle. When the
cycle completes, MC transfers the word from MSB to whichever of the two fetch buffers (FBO, FB1) is free, from
whence AC takes the operand for the nest. If both fetch buffers are in use, MC waits for AC to free one of them.

9
© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

As part of a main store read or write operation, MC also checks for LIV and LOV, in parallel with the actual core
cycle if possible. If either condition obtains, the transfer of data is abandoned and the interrupt sequence begins.

To implement an operation on the Q Store, analogous arrangements are made, involving the Q Store Buffer (QB),
the Address of item in QB (AQB), and the Q Store Address Register (QSAR). In the case of shift instructions, the shift
amount is taken from INS or from Cq as necessary, and placed in QB for transfer to AC and thence to Shift Control.

A modicum of complexity is introduced into SINS operations to avoid delays due to updating the SINS depth
counter. The trick is to have two of them, so that the SINS core stack is addressed alternately by the SINS Even
Address Register (JEVAR) for even-numbered locations, and the SINS Odd Address Register (JODAR) for odd-
numbered locations. During an SJNS operation one counter is used as the current stack pointer while the other is being
incremented or decremented to become the new stack pointer. The JTOG flip-flop indicates which of the two stack
pointers is to be used. (It is not yet clear whether analogous arrangements are made for the arithmetic nest.)

MC’s other great responsibility is instruction fetching. Address registers involved include the Next Instruction-Word
Address (NIWA); the Next Instruction (syllable) Address (NIA); and the Current Instruction (syllable) Address (CIA).
AC’s equivalent to NIA is ANIA and ADIA is its equivalent to CIA. NIWA, NIA, CIA, ANIA and ADIA jointly serve
the role of a ‘program counter’ register in a more conventional architecture.

There are two Instruction-Word Buffers (IWBO and IWB1), each being a 48-bit flip flop register. MC transfers
words containing instructions to whichever of the IWBs is not currently being inspected by AC. CIA is a 4-bit (1+3)
register containing the IWB number and the syllable number of the first syllable of the instruction that MC is currently
obeying. NIA is like CIA, but holds the address, within the IWBs, of the first syllable of the instruction MC is next to
consider. The three extra bits in INS are used by the logic that increments CIA to get the value of NIA. The absolute
value of (NIA—CIA) is less than or equal to four, so MC can skip up to four syllables of AC-only instructions within the
same IWB, in zero time. If NIA points to the ‘other’ IWB from CIA, MC is forced to consider the next syllable on
from the end of the present instruction, even if it is AC-only, for a 1us penalty.

An instruction word is transferred to a free IWB as follows:

* If NIA points to the ‘other’ buffer from CIA, i.e. (NIA:DO # CIA:D0), and ANIA points to the same buffer as CIA,
i.e. (ANAIL:DO = CIA:DO).

* If (NIA:DO = ANIA:DO) A (NIA:DO # CIA:DO) then AC is lagging more than six syllables behind, so MC is held up
until AC exits its present IWB.

e If (NIA:D1-D3 > 3) A (NIA:DO = CIA:DO0), and the syllable addressed by NIA indicates that the next instruction
extends beyond the end of the current IWB, then a new word is fetched into the IWB given by =NIA:DO.

Instruction fetching is disabled by a flip-flop called SPIN. If MC finds SPIN set at the start of its cycle, it leaves it
set at the end, only unsetting SPIN if it got set during the cycle. This mechanism is used to prevent instruction fetching
by the JrCgNZS short-loop instruction, which keeps SPIN set until Cq = 0.

The physical address of the instruction word to be fetched is held in NIWA, a 13-bit flip-flop register. On
unconditional jumps, or successful conditional jumps, the target word’s address is converted from virtual to physical
form, and the result written to NIWA; its syllable address is copied from INS to NIA. On completion of the instruction
fetch cycle, an IWB is filled from MSB.

The jump’s target IWB-number and syllable-number are made available to AC in the JAB register. Now, the target
syllable number of most jumps is constant, and held in the first syllable of the instruction where it is accessible to AC.
EXIT is an exception—its dynamic target address necessitates the JAB register.

Conditional jumps fall into two categories: those that are dependent on values in the nest and those that are not. The
latter are implemented entirely in MC. The former require MC to synchronize with AC, which computes the value of
the jump condition, passes it to MC, and waits. MC steers instruction fetching accordingly; when it has completely
finished with the jump, AC is allowed to continue.

RFIR is inspected from time to time by MC, depending on the instruction being executed. It is not inspected during
any of the following, so an interrupt cannot occur in any of those places: an unsuccessful conditional jump; shift
instructions; Q Store to Q Store transfers; =LINK; OUT; =Qgq, =RQgq, efc; and all single-syllable instructions. Interrupts
are inhibited throughout the execution of the EXITD instruction, to allow the machine to adopt a stable state.

8: ARITHMETIC CONTROL

AC obeys 1-syllable instructions and looks at the first syllable of multi-syllable instructions, some of which require
AC’s participation. The main sequence unit of AC coordinates its activities with MC, and implements simple orders
such as nest manipulation, fixed-point addition and subtraction, and logical operations on bit patterns. Shifts are
delegated to Shift Control, and multiplication and division to a dedicated Multiplier/Divider. The latter both have their
own sequence unit which acts, in effect, as a subroutine of AC.

9: TIMING INSTRUCTION SEQUENCES

It is difficult to give a definitive execution time for a sequence of KDF9 instructions, because it depends on many
dynamically-determined interlock conditions, and these may be influenced by the preceding instruction sequence. The
following summarizes the main issues.

* AC does not begin executing operations which MC has not completed.

* AC can execute instructions only after MC has finished with them, but can inspect them earlier.

10
© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

* AC takes only 1us to deal with a DUMMY instruction, or one it treats as a DUMMY:: these are M+lg, NCgq, DCgq,
Ig==1, Ig=%2, Q-to-Q transfers, =Kk, and all I/O instructions.

¢ AC halts MC when it wants to use the Q Store or the SINS. More precisely, AC sets NOG and waits for MC to stop,
clearing NOG, which cues AC to complete the transfer and restart MC.

* MC waits for AC to compute the condition in a nest-dependent conditional jump; AC then waits until MC has
completed the jump.

* MC does not attempt a jump if the JAB interlock is set.

* MC does not initiate a shift if the shift interlock is set.

* MC does not replace the contents of an IWB until AC has finished with it.

* MC does not action store write cycles until SBARM is clear.

* MC does not deal with an instruction of the =Qgq class if AC has not dealt with the last such instruction. MC sets
AQBM on initiating Q Store housekeeping, and waits at the next such command until AC clears it.

* MC does not action an SJNS instruction until the SJNS interlock is clear; it is set only by =LINK or LINK.

* MC copies previously-fetched data from SB if (SBAR = MSAR) A SBARM.

* MC copies previously-fetched data from QB if (AQB = QSAR) A AQBM.

* MC takes only 1ys to dismiss a 1-syllable instruction it is forced to consider.

* MC waits for AC to catch up before entering an interrupt sequence. Interrupts are requested by setting SKIN, which
stops MC at the end of the current instruction. AC stops when it catches up, and the interrupt is effected as soon as
SKIN A (NIA = ANIA) A =NIFF. This has the curious consequence that an empty-nest NOUV may not be serviced
until the nest has been refilled by subsequent AC-only instructions. The link saved on a NOUYV interrupt is the address
at which NIA equals ANIA, which may be several syllables past the failing instruction.

EXAMPLE 1—T0O COMPUTE THE DOUBLE-PRECISION SCALAR PRODUCT Y xy;

On entry to the loop, Q1 = n/1/0, where 7 is the length of the vectors; the vector x is in the variables YX1...YXn, y is in
the variables YY1...YYn; and the nest contains a pair of zeros. The x+F instruction is a ‘multiply and accumulate’
operation: it forms the double-precision product N1xN2 and adds that to the double-precision sum in N3 and N4.

*1; YX1IM1; YYIM1Q; x+F;
J1C1INZS;
ps in MC | Instruction | psin AC
*1

6 YX1M1 2

7 YY1IM1Q 2

0 X+F 19

4 J1C1NZS 2
17us TOTAL 25us

The first pass through takes 36us: AC must wait for MC to finish each of the first two fetches, and MC must set up
the short-loop mode when it first encounters the JICINZS instruction. Subsequent iterations of the loop take only 25us:
the time in MC is completely overlapped by the time AC takes in the x+F instruction. Note that a faster core store
would not improve the KDF9 time significantly.

The Ferranti Atlas 2, a contemporary of KDF9, allowed some overlap between integer and floating-point units, but
otherwise sequenced instructions conventionally. It had much faster floating-point arithmetic than KDF9 and its scalar
product loop took from 11.9us (with 2.5us core store) to 25.9us (with Sus core store).

Using the value of

(loop time =+ core cycle time)
as a simple measure of ISP efficiency, KDF9’s architecture is between 15% and 20% better in this important algorithm.
EXAMPLE 2—T0O COMPUTE THE POLYNOMIAL ¥ ax’

On entry to the routine N1 contains 7, the order of the polynomial; the value x is in N2; and the vector of coefficients a
is in the variables YAO...YAn.

DUP; =Cl; =M1l; Il=-1; =Q2; YAOMI1;
J2ClZ;
DCl; M+Il;
*1; Q2; xF; YAOM1Q; +F;
J1C1NZS;

2; EXIT 1;

Again, the first iteration of the loop takes longer due to once-only setup time. Subsequent iterations of the loop take
28us, the time in MC being completely overlapped by the floating-point arithmetic. In this case the comparison with
Atlas 2 is less favourable to KDF9. Atlas 2 took from 7.4us to 13.7us per iteration, its advantage being primarily in the
floating-point arithmetic, which is between 12us and 15us faster.

11
© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

APPENDIX 1: KDF9 INSTRUCTION SET AND EXECUTION TIMES
Waits caused by busy-resource interlocks between AC and MC are not included in these times, which are given in ys.
Annotations of the form ‘(xus)’ mean that the entailed core cycle begins x us after MC starts executing the
instruction. ‘*’ means that AC must catch up with MC before MC starts executing the order; AC then waits for MC to
finish before executing the order itself. ‘§’ means that AC waits for MC to stop, taking at least 2 us, before it starts
executing the order; MC then waits for AC to finish before restarting.
The types of operands are declared using the following indicators: D: 96-bit fixed-point; DF: 96-bit floating-point;
F: 48-bit float; FH: 24-bit float; H: 24-bit fixed; I: 48-bit fixed; W: 48 bit non-numerical word. Popping the nest into an
operand x is denoted 1x; pushing x on to the nest is denoted |x; popping the SINS is denoted f; pushing the SINS is
denoted . As an operand, 1 denotes the popped top of the nest, and 1 denotes the popped top of the SINS. Only net
observable effects are shown; no attempt is made to document the actual microcode sequence that implements an order.

See [EEC62a] for more complete information on microcode sequences and instruction timing.

Jumps AC | MC Effect
S1 ISr 2 11 (4.5us) Jump to subroutine: | NIA
S2 IrCqZ,JrCgNZ 2 4 unsuccessful; Jump if Cq is (Not) Zero
11 (4.5us) successful
S3 Ir 2 8 (1.5us) Jump unconditionally
S4 JrCgNZS 2 4 unsuccessful; Jump if Cq # 0 Special {to the start of the
11 (4.5us) successful first preceding word in the instruction buffer, and not
time, but only 4 normally reloading the latter}
S5% | Jr=,Jr 2 5 unsuccessful; Jump if 1=N2, 1#N2, respectively
12 (5.5us) successful
S6* | JIr=Z,Jr#Z,Jr<Z, 2 4 unsuccessful; Jump if 1=0, 1#£0, etc;
Ir=7,Jr>7,Jr<Z 11 (4.5us) successful
S7* | JJEN,JrNEN,JrEJ, |2 3 unsuccessful; Jump if (Not) Empty NEST, (Not) Empty SINS,
JrNEJ, JrTR, JINTR, 10 successful (3.5us) (Not) Test Register,
JrV,JrNV (Not) Overflow
S8* | EXIT offset 2 12 (5.5us), but 13 if offset | NIA := (offset + 1)
is an odd number {return from subroutine / switch to case }
S9* | EXITD 2 12 (5.5us) f NIA; NIFF := 0 {Director-only: enter program}
S10 | LINK 2 4 R
S11§ | =LINK 2 3 I
KEY:

r is an instruction label (an integer in Usercode)

Q Store | AC | MC | Effect
S12 | M+lg 1 4 Mg :=Mgq + 1g
S13 | M-Ig 1 5 Mg :=Mgq - 1g
S14 | NCq 1 5 Cq:=-Cq
S15 | DCq 1 3 Cqg:= Cq-1
S16 | Ig=1 1 3 Ig:=1
S17 | Ig=-1 1 3 Ig :=-1
S18 | Ig=2 1 3 Ig:=2
S19 | Ig=-2 1 3 Ig:=-2
520 | QkKTOQgq 1 4 Qq :=Qk
520 | CkTOQgq 1 4 Cq :=Ck
520 | IkTOQgq 1 4 Ig =1k
520 | MkTOQgq 1 4 Mg := Mk
S20 | IMKTOQq |1 4 Ig :=1k ; Mq := Mk
S20 | CMkTOQq | 1 4 Cq :=Ck ; Mq := Mk
520 | CIKTOQq |1 4 Cq:=Ck;lg:=1p
521 | Qq 2[4 [1Qq
S22 | Cq 2 5 | Cq
S23 | Ig 2 6 l1g
S24 | Mg 2 4 | Mg
KEY:

k, g are Q Store numbers in the range 0..15

© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

SET Instruction | AC | MC

Effect

S25

SETi 2 4

it}

KEY:

i is a constant in the range —32768..4+32767

Q-store | AC | MC | Effect

$26§ |=Qq¢ |2 |2 [1Qq

S26 § | =Cq 2 2 1 Cq

S26 § | =lg 2 2 11g

S26 § | =Mg 2 2 1T Mg

527 § | =RCq 2 3 Reset Qg to 0/1/0; 1 Cq

527 § | =Rlg 2 3 Reset Qg to 0/1/0; 1 Ig

S27 § | =RMgq 2 3 Reset Qg to 0/1/0; 1 Mg

S28 § | =+Qq S 15 11Qg:i+:1Qq

S29 § | =+Cq 5 6 1 Cq; +; 1 Cq

S30§ | =+lg 5 7 llg;+;11g

S31§ | =+Mg 5 5 | Mg; +; 1 Mg
Shifts AC | MC | Effect

S32 | SHA+n, SHAD=+n, SHL+n, SHLD+n 3+t 2 Shift top of NEST = bits left (+) or right (-),
where 7 is in the range Arithmetic (N1), Arithmetic Double-length (N1:N2),
—64 .. +63 Logical (N1), Logical Double-length (N1:N2)

S32 | SHC+n 44t | 2 Shift N1 n bits left (+) or right (=), Cyclic
where 7 is in the range
—48 .. +48

S32 | x+n 16+t | 2 r,l:I;x,s:D;
where n is in the range 151
—64 ..+63 lx=(Uxr)x2"+s

S33 | SHACq, SHADCq, SHLCq, SHLDCq | 3+t | 3 Shift NEST Cgq bits left (+) or right (-), Arithmetic
where Cgq is in the range (N1), Arithmetic Double-length (N1:N2), Logical
-96 .. +96 (N1), Logical Double-length (N1:N2)

S33 | SHCCq 44t | 3 Shift N1 Cgq bits left (+) or right (-), Cyclic
where Cgq is in the range
—48 .. +48

S33 | x+Cq 16+t | 3 r,l:I;x,s:D;
where Cq is in the range 11,51,
-96 .. +96 Lx=(Uxr)x2%+5

KEY:

t is shifting time in excess of 1us, given by r=[a+27] + (if b # 0 then 1 else 0) — 1,
such that the absolute value of the shift lengthn =8a + b,0<a <12,0<b < 8.

Privileged | AC | MC | Effect
S34 * | =K0 1 3 if N1 # 0 then switch on buzzer else switch off buzzer end
=K1 1 3 Copy N1 to BA, CPL and NOL
=K2 1 3 Copy N1 to CPDAR
=K3 1 3 Copy N1 to nest set counters and register set number
S35 * | K4 2 3 | RFIR and Clock
K5 2 3 | PHU registers 0-3
K7 2 3 | nest set counters and register set number

The Kk registers can be accessed only in Director mode, as uncontrolled access may compromise system integrity.

13

© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

Fetch and Store AC | MC Effect
S36 | Direct Fetch: 2 6 (3.5us); | | [a+Mgq]
EaMgq, EaMgQ 7 with Q | With Q:
Mg :=Mg +1q;Cq:=Cqg -1
S37 | Indirect Fetch: 2 7 (4.5us); | | [Mk+Mq]
MkMgq, MkMqQ, 8withQ | With Q:
MAMgN, MkMqgQN, Mg :=Mgq +1q; Cq :=Cqg -1
MiMgH, MkMgQH, Halfword Mq with H,
MiMgHN, MkMgQHN [(1+Mk)+Mgq] accessed with N.
S38 | Direct Store: 1 6 (1.5us); | 1 [a+Mgq]
= EaMgq, = EaMqQ 7withQ | With Q:
Mg :=Mgqg +1q;Cq:=Cqg -1
S39 | Indirect Store: 1 7 (1.5us); | 1 [Mk +Mgq]
=MkMgq, =MkMqQ, 8withQ | With Q:
=MkMgN, =MkM¢QN, Mg :=Mq +1g; Cq:=Cq -1
=MiMgH, =MkMqQH, Halfword Mq with H,
=MkMgHN, =MiMgQHN [(1+Mk)+Mg] accessed with N.
KEY:

a is a main store address

/10 AC | MC

540

Peripheral Read | 1 TLOQgq:

S41

Peripheral Write | 1

PIxQgq, POxQgq:

15+¢

PMHQq (?), CLOQg:

16+t

22+t, but:

15 if unallocated (LIV)

17 if device busy

18 if uncleared parity error
20 if LOV interrupt

S42

Peripheral Gap 1

MGAPQg/POEQgq, MWIPEQg/POFQgq:

19, but:

14 if unallocated (LIV),

16 if device busy

17 if uncleared parity error
19 if LOV interrupt

543

Peripheral Skip 1

MFSKQg/PMAQg, MRWDQg/PMDQg, MBSKQg/PMEQq:

as S42

S44

Peripheral Status | 1 INTQgq:

BUSYQgq, CTQgq:

12, but:
11 if unallocated (LIV)
13 if device busy

13, but:
11 if unallocated (LIV)
13 if device busy

PARQg, MBTQg/PMBQg, MLBQg/PMCQgq, METQq/PMFQq:

14, but:
11 if unallocated (LIV)
13 if device busy

KEY:

t=[(Mg - Ig) + 32] is the time taken setting the lock-out store;

and PIxQg, POxQgq take an additional 6us core cycle per character or word, depending on the I/O device type

14

© 2013 William Findlay (kdf9@findlayw .plus.com)

This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

110 Description

540 | TLOQgq Test Lock-Out

S40 | CLOQgq Clear Lock-Out (Director-only)

540 | PIAQgq Read Forward

540 | PIBQg Read Forward to End-Message

S40 | PICQgq Read {Character (Paper Tape, Cards), from Fixed Heads (Disc)}

S40 | PIDQg Read {Character (Paper Tape, Cards), from Fixed Heads (Disc)}
to End-Message

S40 | PIEQg Read {Backward (Mag. Tape), Alphanumeric (Cards), Next Sector (Disc)}

S40 | PIFQgq Read {Backward (Mag. Tape), Alphanumeric (Cards); Next Sector (Disc)}
to End-Message

77?7 PIGQgq Read {Alphanumeric Character (Cards), Next Sector from Fixed Heads (Disc)}

777 PIHQgq Read {Alphanumeric Character (Cards), Next Sector from Fixed Heads (Disc)}
to End-Message

S41 | POAQgq Write

S41 | POBQg Write to End-Message

S41 | POCQgq Write {Last block (Mag. Tape), Character (Paper Tape, Cards), to Fixed Heads (Disc)}

S41 | PODQgq Write {Last block (Mag. Tape), Character (Paper Tape, Cards), to Fixed Heads (Disc)}
to End-Message

542 | POEQgq Write gap on output (magnetic- or paper-) tape

S42 | POFQq Wipe long gap on magnetic tape

777 POGQgq Write {Alphanumeric (Cards), Next Sector (Disc)}

777 POHQgq Write {Alphanumeric (Cards), Write Sector (Disc)}
to End-Message

777 POKQgq Write {Alphanumeric Character (Cards), Next Sector to Fixed Heads (Disc)}
to End-Message

77?7 POLQgq Write {Alphanumeric Character (Cards), Next Sector to Fixed Heads (Disc)}

5437 | INTQgq Interrupt if device is busy (Director Entry)— may be S447?

S43 | PMAQgq Forward Skip (Mag. Tape), Seek (Disc)

S43 | PMDQgq Rewind (Mag. Tape), Home Heads (Disc)

543 | PMEQgq Backward Skip (Mag. Tape)

S44 | CTQgq Clear Transfer (Director-only)

S44 | MANUALQgq | Clear Transfer, setting device offline (Director-only)

S44 | PARQgq Test for Parity-Check or other device error

S44 | BUSYQgq Test for Busy device

S44 | PMBQgq Test for Beginning of Tape window (Mag. Tape)

S44 | PMCQgq Test for Last Block

S44 | PMFQgq Test for End of Tape Warning (Mag. Tape), Test for End of Area (Disc)

777 PMGQgq Read C-Store (Director-only)

777 PMHQgq Set Lock-Out (Director-only)

17? PMKQgq Forward Skip, even parity, on IBM tape

77? PMLQgq Backward Skip, even parity, on IBM tape

Interrupts | AC | MC Effect
S45 | OUT 2 3 (2.5pus) | System-call: | NIA; enter Director state
Interrupt 2 3 (2.5us)

15
© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

‘arithmetic’, all S46 AC Effect {MC takes Ous, or 1ps if too far ahead of AC}
+,— r, 2L, Ity

ABS rrl;tr [lrl

DUMMY ‘No-op’

ERASE,REV Reorder top of nest: see §2.3.

NEG rilytr | -r

NOT rW;tr, |-r

AND, OR r,l:W;tr,l; | Iar {butforOR: |[lvr}
ROUND r:D; 1 r; | (r rounded to I)

VR Clear Overflow

=TR 1 [;if I <0 then set Test Register end
CONT r: D; 1 r; | (r contracted to 1)

DUP, CAB, PERM, ZERO

Reorder top of nest: see §2.3.

NEGD

r:D;tr; | —r

N || [W[W[W[W[W W[D DD | r= = | = = | | | | |

NEV r,l:W;1r1l; | l=zr {NotEquivalent,i.e., exclusive or}
ROUNDH r:1; 1 r; | (rrounded to H) {D24-D47 of result are undefined}
+D,-D r,l:Dytr, | l+r

NEGF riF1r | -r

ROUNDF r: DF; 1 r; | (r rounded to F)

ROUNDHF r:F; 1 r; | (rrounded to FH) {D24-D47 of result are undefined}
SIGN r,l:1;1r,l; | if I>rthen +1 elsif / < then —1 else 0 end
STR r:1; 1 r; [(rstretched to D): DO-D47 of result = r:D0, D48 = 0
ABSF r:F;1r; | 1rl {ABSF takes only 1usif r =0}

DUPD, REVD Reorder top of nest: see §2.3.

MAX r,l:1;1r,l;ifl=rthen | r,[; set Overflow else | [, r end
SIGNF r,l:F;1r,l; | if[>rthen +1 elsif / < r then —1 else 0 end
STAND 5+n r:F; 1 r; | (r normalised)

FIX 6 reFy,x:Ltrly,xr=yx2,-1<y<+l

MAXF 6 r,l:F;1r,l;ifl=rthen | r,[; set Overflow else | /, r end
FLOAT T+n x:FEr,l:Ltrl | x=1x2"-128 <r<+127

+F, -F T+a+n r,l:Ftr, | l+r

FLOATD 8+n x:DF;r:L;1:D;1r,l; | x=1x2", unrounded: —128 <r < +127
NEGDF 9+n r: DF; 1 r; | —r, unrounded

+DF, -DF 12+a+n A | r,1: DF; 1 r,[; | [+ r,unrounded

xD 14 r,l:Lx:Dytr,l; x=Ixr

X 15 r,l:L;x:D;1r,l; | DO-D47 of (x = x r), rounded

xF 15+n r,,x:F,tr,l; | x=Ixr

xDF 16+n r,l:F;x:DF; 1r,l; | x=1[1xr,unrounded

x+F 18+a+n r,l:F;x,s :DF;1r,l;1s; | x=10xr+s,unrounded

BITS 27 r:Wy;x:L1r | x=#of I-bitsin r

+F 35+n r,l,x:F;1r, ;| x=1+r,unrounded

+DF 36+n x,r:F;1:DF;1r, ;| x=1+r,unrounded

+ 36+a+n x,r,l:L;1r ;| x=1+r,rounded: -1 <x <+1

+D 36+a+n x,r:L1:D;1r, ;| x=1+r,rounded: -1 <x <+1

=1 36+a+n dn,g,r:L;1d;1n; lg,rin=dxq+r,Irl<ldl,rd>0

<R 36+a+n | fox,r LDyt L fixil=rxx+2Yf,-1<x<+]

TOB ~2+4b r,1:W; b:1; 1 r,1; | b=rconverted to binary using radixes [
FRB ~ 84+3b r:I;l,c: W;1r,l; | c=rconverted from binary using radixes /
KEY:

a is shifting time in excess of 1xs needed to align the operands
n is shifting time in excess of 1xs needed to produce a normalized result

b is the number of 1 bits in the numerical operand
A denotes a “variable time” instruction, whose timing depends on which operand has the larger exponent

16

© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

APPENDIX 2: KDF9 INSTRUCTION SET ENCODING
Operand coding symbols:

a A main store word address bit

b A non-decoded “don’t care” bit—should be set to O

h A halfword is to be added to the return address if h =0
i A bit of a 16-bit constant

kkkk, ggqgq Q Store register numbers (0..15)

sss A instruction syllable number in 0..5; 6 and 7 invalid
u Device is set unready on completion of operation

The first column gives the identifier of the MC microcode sequence that carries out the instruction.

Instruction \ Bits: |0, |2, |4 |5-7 |8-11 | 12-15 | 16-23
1 3

S1 JSr 10 00 a Sss 1101 aaaa aaaaaaaa
S2 JrCqZ 10 10 a | sss qqaqq aaaa aaaaaaaa
S2 JrCgNZ 10 11 a | sss qqqq aaaa aaaaaaaa
S3 Jr 10 00 a | sss 1011 aaaa aaaaaaaa
S4 JrCgNZS 01 11 1 |111 qqqaq bbbb

S5 Jr= 10 01 a | sss 0001 aaaa aaaaaaaa
S5 Jr# 10 00 a | sss 0001 aaaa aaaaaaaa
S6 Ir>Z 10 01 a | sss 0100 aaaa aaaaaaaa
S6 Jr<Z 10 00 a | sss 0100 aaaa aaaaaaaa
S6 Ir<Z 10 01 a | sss 0010 aaaa aaaaaaaa
S6 Ir=7 10 00 a | sss 0010 aaaa aaaaaaaa
S6 Ir=Z 10 01 a | sss 0110 aaaa aaaaaaaa
S6 Jr#Z 10 00 a | sss 0110 aaaa aaaaaaaa
S7 Jrv 10 01 a sss 1000 aaaa aaaaaaaa
S7 JrNV 10 00 a sss 1000 aaaa aaaaaaaa
S7 JrEN 10 01 a sss 1010 aaaa aaaaaaaa
S7 JrNEN 10 00 a sss 1010 aaaa aaaaaaaa
S7 JrEJ 10 01 a Sss 1100 aaaa aaaaaaaa
S7 JrNEJ 10 00 a Sss 1100 aaaa aaaaaaaa
S7 Jr'TR 10 01 a sss 1110 aaaa aaaaaaaa
S7 JrNTR 10 00 a sss 1110 aaaa aaaaaaaa
S8 EXIT 10 00 a 0ho 1111 aaaa aaaaaaaa
S9 EXITD 10 01 0 | 010 1111 0000 00000000
S10 | LINK 01 11 |1]011]| 0000 | bbbb

S11 | =LINK 01|11 |1|100| 0000 | bbbb

S12 | M+lg 01| 10| 0| 000 | 9999 | bbbb

S13 | M-Ig 01| 10| 0| 001 | 9949qg | bbbb

S14 | NCq 01 10| 0| 010 | 999qg | bbbb

S15 | DCq 01 |10| 0| 011 | 99dd | bbbb

S16 | Ig=1 0110|0100 | 999qg | bbbb

S17 | Ig=—1 01 |10| 0| 101 | 9949g | bbbb

S18 | Ig=2 01 |10| 0| 110 | 9999 | bbbb

S19 | Ig=-2 01 |10| 0| 111 | 99499 | bbbb

S20 | MkTOQgq 01|10 | 1| 001 | kkkk | ggaq

S20 | IkTOQgq 01|10 | 1| 010 | kkkk | ggaq

S20 | IMKTOQqg | 01 | 10 | 1 | 011 | kkkk | ggqq

S20 | CkTOQgq 01|10 | 1| 100 | kkkk | ggaq

S20 | CMKTOQg | 01 | 10 | 1 | 101 | kkkk | ggqqg

S20 | CIKTOQqg | 01 | 10 |1 | 110 | kkkk | ggqq

S20 | QkTOQgq 01|10 | 1| 111 | kkkk | ggqaq

17
© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

S21 | Qq 01|11|1|001 49999 | 111b
S22 | Cq 01|11|1|001)|4999g9 | 100b
S23 | Ig 01|11|1|001)|4999g9 | 010b
S24 | Mg 01|11|1)|001)|4999g9 | 001b
S25 | SET |11 [bb [b | 1b0 [iiii [iiii |iiiiiiii
S26 | =Qgq 0111|1000)|499gg | 1110
S26 | =Cq 0111|1000 |9gaqg | 1000
S26 | =lg 0111|1000 |9gaqg | 0100
S26 | =Mg 0111|1000 |9ggg | 0010
S27 | =RCq 01|11|1)|000|d9gag | 1001
S27 | =Rlg 01|11|1)|000|49gag | 0101
S27 | =RMgq 01|11|1|000|d9ggg | 0011
S28 | =+Qq 01 (11 |1|010|g999g9 | 111b
S29 | =+Cq 01 (11 |1| 010|999 | 100b
S30 | =+lg 01 (11 |1|010 |g999g9 | 010b
S31 | =+Mg 01 (11 |1|010 |g999gq | 001b
S32 | SHA+n 01|11|0]| 001 | nnnn | nnnl
S32 | SHAD=n 0111|0010 | nnnn | nnnl
S32 | x++n 01|11|0]| 011 | nnnn | nnnl
S32 | SHL+xn 0111|0100 | nnnn | nnnl
S32 | SHLD=+n 0111|0110 | nnnn | nnnl
S32 | SHC+n 0111|0111 | nnnn | nnnl
S33 | SHACq 0111|0001 | ggaq | bbb0
S33 | SHADCq 0111|0010 | ggaq | bbb0
S33 | x+Cq 0111|0011 | ggqq | bbb0
S33 | SHLCq 0111|0100 | ggaq | bbb0
S33 | SHLDCgq 01|11|0]| 110 | ggaq | bbb0
S33 | SHCCq 01|11|0]| 111 | ggaq | bbb0

S34 | =KO0 01]11|1]101| 1000 | 0000
S34 | =K1 01]11|1]101| 0100 | 0000
S34 | =K2 01]11|1]101| 0010 | 0000
S34 | =K3 01]11|1]101| 0001|0000
S35 | K4 0111|1110 | 0000 | 1000
S35 | K5 0111|1110 | 0000 | 0100
S35 | K7 0111|1110 | 0000 | 0001
S36 | EaMg 11 |aa | a | 000 | 9999 | aaaa | aaaaaaaa
S36 | EaMqQ 11 |laa | a | 010 | 9999 | aaaa | aaaaaaaa
S37 | MkMg 01|00 |0 |000|ggaq | kkkk
S37 | MkM¢gQ 01|00|0|010 | ggaq | kkkk
S37 | MkMgH 01|00 | 0| 100 | ggqq | kkkk
S37 | MkMgQH 0100|0110 | ggqq | kkkk
S37 | MkMgN 01|00 |1]|000|gagdaq | kkkk
S37 | MkMgQN 01|00 |1]|010 | ggaq | kkkk
S37 | MkMgHN 01|00 |1] 100 |qggdaq | kkkk
S37 | MkMgQHN | 01 | 00 | 1 | 110 | ggaq | kkkk

S38 | =EaMgq 11 | aa 001 | 9999 | aaaa | aaaaaaaa

V)]

S38 | =EaM¢Q 11 |aa|a | 011 | 99ad | aaaa | aaaaaaaa

18
© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

S39 | =MkMgq 0100|0001 |daggqgq | kkkk

S39 | =MkM¢gQ 01 00| 0| 011 | gggq | kkkk

S39 | =MkMgH 0100|0101 | gggq | kkkk

S39 | =MkM¢gQH 0100|0111 | gggq | kkkk

S39 | =MkM¢gN 0100|1001 |dggqq | kkkk

S39 | =MkM¢gQN 01 00| 1|011 | gggq | kkkk

S39 | =MkM¢gHN 01 (00| 1|101 |gggq | kkkk

S39 | =MkMgQHN | 01 | 00 | 1 | 111 | gadq | kkkk

S40 CLOQgq 01|/01|0]|100|999d | 001u
S40 TLOQgq 01|/01|0]| 100 | 9999 | 010u
S40 | PIA | MFRQgq 01|/01|0]| 100 | 99d9d | 000u
S40 | PIB | MFREQq 0101|0101 |g9ggq | 000u
S40 | PIC | RCQgq 01|/01|0]| 100 | 99d9d | 100u
S40 | PID | RCEQgq 0101|0101 |g9g9q | 100u
S40 | PIE | MBRQg 0101|0110 |g9ggq | 000u
S40 | PIF MBREQq 0101|0111 |g9ggq | 000u
77?7 | PIG | PIGQgq 0101|0110 |g9ggq | 100u
77?7 | PIH | PIHQq 0101|0111 |g9g9q | 100u
S41 | POA | MWQgq 01|01|1]|000|9g949g | 000u
S41 | POB | MWEQyq 01 [01|1]001|gggq | 000u
S41 | POC | MLWQygq 01|01|1]|000|9949q | 100u
S41 | POD | MLWEQq 01 [01|1]001|gggq |100u
S42 | POE | MGAPQgq 01|01|1]|000|9949gq | 110u
S42 | POF | MWIPEQgq 01|01|1]|000|9949gq | 010u
77?7 | POG | POGQgq 01|01|1]|010|99d9d | 000u
7?7 | POH | POHQgq 01|01|1]|011]|99d9d | 000u
77?7 | POK | POKQgq 0101|1011 |g9gg9q |100u
7?7 | POL | POLQgq 01|/01|1]|010| 9999 | 100u
S43 INTQq 01 (01|1]|10b|g9ggq | Oblu
S44 CTQq 01|01|0]| 000 |g9gaq | 0000
S44 MANUALQq | 01 | 01 | 0 | 000 | 9999 | 0001
S44 BUSYQq 01|01|0]|000|g9ggq | 001u
S44 PARQq 0101|0001 |gggq | 000u
S43 | PMA | MFSKQq 01|01|1]|100|49g9gq | 000u
S44 | PMB | MBTQq 01|01|0]|000|49ggq | 100u
S44 | PMC | MLBQgq 01|01|0]|000|g9ggq | 010u
S43 | PMD | MRWDQgq 0101|1110 |9g9gq | 100u
S43 | PME | MBSKQgq 0101|1110 |g9g9gq | 000u
S44 | PMF | METQq 0101|0010 |9ggq | 000u
77?7 | PMG | fetch C store 22 | 22 | 2| 22?2 | 9999 | 2227
77?7 | PMH | set lock-out 22 | 22 | 2| 22?2 | 999qg | ?22?2?
77?2 | PMK | 7TFSK even | 01 | 01 | 1 | 100 | 9999 | 010u
772 | PML | 7TBSKeven | 01 | 01 | 1 | 110 | 9999 | 010u

Note: if PMH, ‘set lock-out’ is like CLOQgq and TLOQgq, it might have the code
01 01 0 100 gggg 100u, or 124:8. PMG remains a complete mystery.

45 | oUT | 10 [00 | b | bbb [1001 | bbbb | bbbbbbbb

19
© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

S46 | Illegal 00 | 000000 S46 | Illegal 00 | 100000
S46 | VR 00 | 000001 S46 | ZERO 00 | 100001
S46 | =TR 00 | 000010 S46 | DUP 00 | 100010
S46 | BITS 00 | 000011 S46 | DUPD 00 | 100011
S46 xF 00 | 000100 S46 | =1 00 100100
S46 xDF 00 | 000101 S46 | FIX 00 |100101
S46 Unused ? 00 | 000110 S46 Illegal 00 100110
S46 x+F 00 | 000111 S46 | STR 00 |100111
S46 | NEGD 00 | 001000 S46 | CONT 00 101000
S46 | OR 00 | 001001 S46 | REVD 00 | 101001
S46 | PERM 00 [001010 S46 | ERASE 00 |101010
S46 | TOB 00 | 001011 S46 | -D 00 |101011
S46 | ROUNDH 00 [001100 S46 | AND 00 |101100
S46 | NEV 00 | 001101 S46 | Illegal 00 |101101
S46 | ROUND 00 [001110 S46 | + 00 101110
S46 | DUMMY 00 | 001111 S46 | +D 00 | 101111
S46 | ROUNDF 00 | 010000 S46 | = 00 | 110000
S46 | ROUNDHF | 00 | 010001 S46 | =D 00 | 110001
S46 | -DF 00 [010010 S46 | <F 00 | 110010
S46 | +DF 00 | 010011 S46 | =DF 00 |110011
S46 | FLOAT 00 [010100 S46 | =R 00 | 110100
S46 | FLOATD 00 | 010101 S46 | REV 00 |110101
546 | ABS 00 | 010110 S46 | CAB 00 |110110
S46 | NEG 00 | 010111 S46 | FRB 00 | 110111
S46 | ABSF 00 [011000 S46 | STAND 00 | 111000
S46 | NEGF 00 | 011001 S46 | NEGDF 00 | 111001
S46 | MAX 00 [011010 S46 | MAXF 00 | 111010
S46 | NOT 00 | 011011 S46 | Illegal 00 |111011
S46 xD 00 [011100 S46 | +F 00 | 111100
S46 X 00 | 011101 S46 | -F 00 | 111101
S46 | — 00 [011110 S46 | Illegal 00 | 111110
546 SIGN 00 | 011111 546 | SIGNF 00 | 111111
20

© 2013 William Findlay (kdf9@findlayw .plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

APPENDIX 3: THE I/O INSTRUCTIONS
In the following tables, blank cells are to be taken as inheriting the common semantics; where something is shown in a
cell it overrides the common semantics.

INPUT INSTRUCTIONS
PIA | PIB | PIC PID PIE PIF PIG PIH
common | R RE [CR CRE | =PIA | =PIB | =PIC | =PID
CR BR | BRE | CBR | CBRE | AR ARE | CAR | CARE
FD FR FRE | RN RNE | FRN | FRNE
MT EE =PIA | =PIB | <R <RE | =PIE | =PIF
MTIBM JOR | VR | =PIA | =PIB | O<R | V<R | =PIE | =PIF
SI XR XRE
OUTPUT INSTRUCTIONS

POA [POB |POC |POD |POE |POF POG (POH |POK [POL
common | W WE CW CWE | LIV |LIV |UND |UND | UND | UND
CP BW | BWE | CBW | CBWE | =POC | =POA | AW AWE | CAWE | CAW
DR =POA | =POB | WZ =POE
FD FW FWE | =POC | =POA | WN WNE | FWNE | FWE
GP =POA =POC | NOP | NOP
LP 22? 22? ?227? ?227? ?2?27? ?227?
MT EE WL WLE | GAP | WIPE
MTIBM J OW | VW oT VT GAP | WIPE
SI CGAP | WGAP
TP CGAP | WGAP

DEVICE CONTROL INSTRUCTIONS
PMA |PMB (PMC (PMD (PME (PMF |PMG |PMH |(PMK |PML

common | LIV | NOP NOP LIV | LIV | NOP RCS? | SLO? | UND UND

CR TRC?

FD S P UND | EOA?

GP/TP GPA?

MT EE >> BOT? | LBL? | <<< | << ETW?

MTIBM | 0>> | BOT? | LBL? | <<< | O<< | ETW? v>> V<<
SI T8T? | T8T?

TR T8T?

21

© 2013 William Findlay (kdf9@findlayw.plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

KEY:

common these effects are common to all devices, unless over-ridden by a specific table entry
CP card punch

CR card reader

DR drum store

FD fixed disc store

GP graph plotter

LP line printer

MT EE EE magnetic tape deck
MT IBM IBM-compatible 7-track magnetic tape deck

SI standard interface buffer

TP paper tape punch

TR paper tape reader

A alphanumeric (converted to/from all 12 card rows in each column)
B binary (direct to/from 6 card rows, twice in each column)

c character (each character transferred is stored in the least significant 6 or 8 bits of a word)
E stopping on an End Message character

F using the fixed heads

N next sector

(0] in odd parity

P clear disc head positions

R read

S seek disc heads

T write tape mark

v in even parity

X without parity

< backward (for read operation)

>> forward skip up to Mg blocks

<< backward skip up to Mg blocks

<< rewind the tape to before its first block

=Pxy having the same effect as the Pxy order for this device

CGAP punch a gap of length Mg / 10 inches

WGAP punch a gap? (‘word gap’; undocumented)

GAP erase an inter-block gap of Mg words

WIPE erase a bigger inter-block gap than GAP

BOT? Test Register := tape at Beginning Of Tape window

EOA? Test Register := disc transfer reached end of area

ETW? Test Register := tape at End Tape Warning

GPA? Test Register := a graph plotter is attached to the buffer and not a tape punch
LBL? Test Register := tape at Last Block marker

T8T? Test Register := device in 8-channel mode

TRC? Test Register := recheck switch is set on the card reader
RCS? Director-only (LIV caused in program mode): ‘read C store’
SLO? Director-only (LIV caused in program mode): ‘set lock-outs’
LIV Lock-In Violation (always)

NOP no operation

UND undefined

?2?27? undocumented

22

© 2013 William Findlay (kdf9@findlayw.plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

APPENDIX 4: THE KDF9 CHARACTER SETS AND CODES

Line printer SP NLC CRLF PC NLC NLC % '
Normal Case SP NLC CRLF PC HT NLC CS CN
Shift Case SP NLC CRLF PC HT NLC CS CN
Card rows none Y68 Y28 028 058 Y58 048 Y78
Octal code 00 01 02 03 04 05 06 07
Line printer : = () £ * , /
Normal Case NLC NLC NLC NLC NLC NLC NLC /
Shift Case NLC NLC NLC NLC NLC NLC NLC :
Card rows 48 38 X58 X28 X38 X48 038 01
Octal code 10 11 12 13 14 15 16 17
Line printer 0 1 2 3 4 5 6 7
Normal Case 0 1 2 3 4 5 6 7
Shift Case 1 [] < > = =
Card rows 0 1 2 3 4 5 6 7
Octal code 20 21 22 23 24 25 26 27
Line printer 8 9 NLC 10 H + -

Normal Case | 8 9 - 1o H + -

Shift Case () _ £ ; # * '
Card rows 8 9 068 X68 Y48 Y X Y38
Octal code 30 31 32 33 34 35 36 37
Line printer NLC A B C D E F G
Normal Case NLC A B C D E F G
Shift Case NLC a b c d f g
Card rows 078 Y1 Y2 Y3 Y4 Y5 Y6 Y7
Octal code 40 41 42 43 44 45 46 47
Line printer H I J K L M N 0
Normal Case H I J K L M N (o]
Shift Case h i J k 1 m n o
Card rows Y8 Y9 X1 X2 X3 X4 X5 X6
Octal code 50 51 52 53 54 55 56 57
Line printer P Q R S T U \Y W
Normal Case P Q R S T U v W
Shift Case p a r s t u v w
Card rows X7 X8 X9 02 03 04 05 06
Octal code 60 61 62 63 64 65 66 67
Line printer X Y Z NLC NLC NLC NLC 0]
Normal Case | X Y z NLC NLC - NLC 0]
Shift Case x y z NLC NLC - NLC 0]
Card rows 07 08 09 58 68 78 X78 28
Octal code 70 71 72 73 74 75 76 77
KEY:

SP is (blank) Space; CRLF is Carriage Return Line Feed (i.e. New Line); PC is Page Change (i.e. Form Feed); HT is
Horizontal Tab; CS is Case Shift; CN is Case Normal. NLC indicates a non-legible character (always suppressed by the
line printer); and @ represents the filler character, suppressed by all legible output devices in normal transfer modes.

The underline ° * does not advance the Flexowriter carriage and so is over-printed by the following character; it is
used to represent Algol 60 ‘publication language’ basic symbols, e.g., ‘begin’, as ‘begin’.

The ;4 is the single-character exponent delimiter used in Algol 60’s real number syntax.

Punched cards have 80 columns of 12 rows. Rows 0-9 represent the decimal digits with a single punched hole. The
two rows above are called X and Y (11 and 12 on some non-KDF9 systems). Most non-numeric characters are
represented by combinations of two or three holes, one from rows Y, X, or 0, and the others in rows 1 through 8.

23
© 2013 William Findlay (kdf9@findlayw.plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

APPENDIX 5: THE KDF9 GRAPH PLOTTER CODES

Effect: Octal code:
no effect 00
step paper back 01
step paper forward | 02
step pen right 04
step pen left 10
step pen right, 11
step paper back

step pen left, 12
step paper forward

lower pen 20
raise pen 40

All other 6-bit character codes represent invalid plotter commands.
REFERENCES AND BIBLIOGRAPHY

[Davis60] ‘The English Electric KDF9 Computer System’; G.M. Davis,
BCS Computer Bulletin, Vol. 4 No. 3; 1960.

[EEC62a] ‘KDF9: Basic Organisation of Controls; and Instruction Timings’; J.R. Lucking and J.P. O’Neil;
Report K/GD.y.73, The English Electric Company Limited; 9 July 1962.

[EEC62b] ‘Notes on KDF 9 Main Control’; J.A. Edwards;
Report K/GD.u.293, The English Electric Company Limited; 7 September 1962.

[EEC62c] ‘KDF 9—Transformer Sequence Units’; J.R. Lucking;
Report K/GD.y.81, The English Electric Company Limited; 15 November 1962.

For the above three documents, see: http://sw.ccs.bcs.org/KDF9/Wichmann/techdoc.html

[EEC69] KDF9 Programming Manual,
Publication 1002 mm (R) 2™ Edition, English Electric Computers Limited; October 1969.

[Findlay11a] ‘The English Electric KDF9’; W. Findlay; 2011.
[Findlayxxx] ‘The Software of the KDF9’; W. Findlay; (in preparation).
For the above three documents, see: http://www.findlayw.plus.com/KDF9/

[Haley62] ‘The KDF9 Computer System’; A.C.D. Haley,
Proceedings of the Fall Joint Computer Conference, AFIPS Conference Proceedings, Vol.22; 1962.

[WR67] ‘Competition for memory access in the KDF9’; C.S. Wallace and B.G. Rowswell,
Computer Journal, Vol.10, pp. 64-68; 1967.

24

© 2013 William Findlay (kdf9@findlayw.plus.com)
This document is licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

