

© 2015 William Findlay, kdf9@findlayw.plus.com

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

1

README: ABOUT THE KDF9 EMULATOR ee9, VERSION 2.0r
CONTENTS

INTRODUCTION
A. Getting acquainted
B. Getting started

THE ee9 EMULATOR, V2.0r: WHAT YOU GET
A. In the Documents directory
B. In the Testing directory
C. In the Source directory
D. In the Build directory

SIMPLE EXAMPLES
A. Running the Whetstone Algol system
B. Compiling and running Usercode programs
C. Running the Time Sharing Director

MISCELLANEOUS OS ISSUES
A. POSIX environment
B. Getting a GNAT Ada 2005 compiler
C. Getting the Usercode compiler, kal3

INTRODUCTION
A. GETTING ACQUAINTED
Version 2.0r of ee9, my KDF9 emulator, is the first to support the KDF9 graph plotter. ee9 runs a variety of interesting
and important KDF9 programs. It has proven very reliable, and has no known bugs, but of course you may discover
some. Please report them to me, using the address kdf9@findlayw.plus.com, to help advance the debugging effort.

The download package for OS X includes binaries that run on 10.10 (Yosemite), 10.9 (Mavericks), 10.8 (Mountain
Lion), 10.7 (Lion) and 10.6 (Snow Leopard). Additional download packages include binaries for other OS/hardware
combinations. Mike Hore has provided a build of ee9 and kal3 for a PowerPC G5 Mac running OS X 10.5 (Leopard).
Bill Gallagher has provided builds for Intel x86_32 and x86_64 under Linux, for Intel x86_32 under Microsoft Windows,
and for the ARM11-based Raspberry Pi under Raspbian Linux. The source code of ee9 is released under the terms of the
GPL, version 3.

These distributions can be found at:

 http://www.findlayw.plus.com/KDF9/emulation/

B. GETTING STARTED
A number of files in the Testing directory need to have execute permission set. If necessary, you can ensure this by
running (in Testing) the command:

 sh ./set_permissions

before doing anything else.
That done, you can verify the correct operation of my binary, or a port to another platform, by running (in Testing)

the command:
 ./ee9_self_test

To be honest, this checks that your ee9 implementation gives the same results as mine, on a variety of Usercode and
Whetstone Algol programs. It runs a set of test cases and allows you to compare expected and actual outputs and
execution digital signatures (these are hashes of the register values at the end of each instruction-execution). It
automatically compares its results file with a file containing the results from a run on my own computer, taken to be the
standard of correctness. If your ee9 passes these tests we can safely assume that it is working as well as mine.

© 2015 William Findlay, kdf9@findlayw.plus.com

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

2

THE EE9 EMULATOR SYSTEM, V2.0r: WHAT YOU GET
A. IN THE Documents DIRECTORY:

1. A guide to using ee9: ‘Users Guide for ee9.pdf’: read this document first!
2. A ‘HOWTO’ file that gives instruction on the operating procedures to be followed for compiling and executing

both Usercode and Whetstone Algol (Walgol) programs.
3. Two papers by me, documenting the KDF9’s hardware and software:
 ‘The English Electric KDF9.pdf’ and
 ‘The Hardware of the KDF9.pdf’.
4. A list of all the error numbers generated by the Whetstone Translator and Controller:
 ‘Walgol Error Numbers.pdf’
5. A file, ‘ee9 Release History.pdf’, that describes the amendment history of all ee9 releases to date.

B. IN THE Testing DIRECTORY:

1. An Algol subdirectory, containing Whetstone Algol 60 source-program and data files

2. An Assembly subdirectory, containing Usercode assembly-language source program files and their data files

3. A Binary subdirectory, containing KDF9 machine code programs for:
 a. The Whetstone Translator (compiler): KMW0201--UPU
 b. The Whetstone Controller (interpreter/VM): KMW0301--UPU
 c. The EE Time Sharing Director (KDF9 OS): KKT40E007UPU
 d. A selection of programs compiled from the Assembly subdirectory.

4. A collection of files to represent the KDF9’s I/O devices; for example: LP0, TR1, and so on

5. An executable binary of kal3, David Holdsworth’s new Usercode compiler

6. UNIX shell scripts to facilitate running kal3, KDF9 object programs, the Whetstone Algol system,
 and the Time Sharing Director.

7. An executable binary of my KDF9 emulator: ee9

8. A small set of shell files to implement a basic self-checking process for ee9:
 ee9_self_test, ee9_test_case, and ee9_test_run

9. A text file containing the results of running ee9_self_test on my own computer, used as a comparator for
 its own results: ee9_good_test_case_log.txt

C. IN THE Source DIRECTORY:
Complete Ada 2005 source code for ee9 is provided. It should compile without errors and without warning messages.
For Windows only, there is also a short routine, written in C, to fetch a value defined in a C header file in Cygwin.

D. IN THE Build DIRECTORY:

1. A shell command file to build ee9, mk9

2. GNAT option files for various alternative builds of ee9: adc-*.adc;
 The currently distributed binary is a testing build, for obvious reasons.
 (A build without runtime testing is less than 6% faster on my MacBook Pro.)

3. The option file used to generate the distributed binary of ee9: gnat.adc

4. The compilation listing of that build: komlog.ada

SIMPLE EXAMPLES
These examples assume that the current working directory is Testing. It is convenient to have a terminal window open
in the Testing directory, if you will be making multiple runs of ee9. If you further put Testing in your shell PATH
variable, you will be able to run the commands supplied in Testing with no need for the ‘./’ prefix shown in the
examples below.

The shell commands tsd, whet, nine and nine_test conveniently abbreviate common usages of ee9. They
invoke, in turn, simpler commands that you may prefer to use directly. For much more detailed help with this, see the
HOWTO file in the Documents directory.

© 2015 William Findlay, kdf9@findlayw.plus.com

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

3

A. RUNNING THE WHETSTONE ALGOL SYSTEM:
To run the Whetstone system on the Algol 60 program Algol/sieve.a60:
 ./whet sieve

B. COMPILING AND RUNNING USERCODE PROGRAMS:
To compile Usercode/HiGuys.k3, and run it in trace mode (N.B.: HiGuys needs no data file, hence the ‘-’):
 ./ucc HiGuys
 ./nine HiGuys - t

C. RUNNING THE TIME SHARING DIRECTOR:
To execute a run of Director in trace mode:

 ./tsd t

MISCELLANEOUS OS ISSUES

A. POSIX ENVIRONMENT
You may benefit from ensuring that your system is set up to use the Latin-1 character set. You can find out by issuing the
bash command:
 set | grep LANG

If the output does not contain ‘ISO8859-1’ then you need to reset your locale and character set. The bash command:
 export LANG=en_GB.ISO8859-1

(or its equivalent using another shell) will achieve this for UK users. (This is not relevant to Windows.)
If you are using Windows and you want to run the shell command files that I provide to make life with ee9 a little

easier, or if you want to compile your own version of ee9, then you will need to install Cygwin, which provides a POSIX
command set and API for Windows, including a bash-compatible shell named dash. A suitable version can be obtained
from: http://www.cygwin.com/install.html

B. GETTING A GNAT ADA COMPILER
If you want to build ee9 yourself, you will need a recent version of GNAT, the GNU Ada compiler, because ee9 is
written in Ada 2005. Current versions of GNAT for several systems, including OS X, x86_32 Linux, x86_64 Linux, and
x86_32 Windows, can be obtained with a GPL licence from AdaCore at: http://libre.adacore.com/libre

A good option if you have a PowerPC (G3/G4/G5) Mac running OS X Leopard or Tiger is:

http://sourceforge.net/projects/gnuada/files/GNAT_GPL%20Mac%20OS%20X/2009-tiger-ppc/

(N.B. on OS X you will also need to install XCode, Apple’s SDK and IDE, and its BSD command-line subsystem.)

GNAT is supported by Raspbian on the Raspberry Pi, so use the apt-get utility to fetch and install it, thus:
apt-get update

 apt-get install gnat

There are compilers for many other hardware/software combinations at:

 http://sourceforge.net/projects/gnuada/files/

If your system is not one of these, you may find pointers to a suitable port at the Ada Programming Wikibook. If none of
these meets your needs, try asking in the comp.lang.ada USENET newsgroup. People there are very helpful and may
already have just the port you need. As a last resort, you may be able to compile your own version of GNAT; the source
code is available for download from the Free Software Foundation. (Please don’t ask me for help with this; I have
absolutely no idea how to go about it!)

C. GETTING THE USERCODE COMPILER, kal3
David Holdsworth’s kal3 (a new KDF9 Usercode compiler) and KDF9Flex (a program to facilitate the creation of
Algol 60 source code in a variety of convenient representations) can be obtained in source code from links given here:

 http://sw.ccs.bcs.org/KDF9/walgol.htm

If you are using OS X, Linux, Raspbian or Windows, then you will find a binary of kal3 in the appropriate download
package. If not you will have to compile kal3 for yourself, following David Holdsworth’s (simple) instructions. Current
sources for kal3 are also provided in Build/kal3/, and these were used to generate the kal3 binaries included in
the download packages. If you want to recompile kal3, it would be worth checking the website in case a newer version
is available. It is trivial to compile kal3, using the kal3 option of mk9; a couple of warning messages are produced on
my computer, but these do not presage any problems in use.

