
For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

1

USERS’ GUIDE FOR ee9: AN ENGLISH ELECTRIC KDF9 EMULATOR
by BILL FINDLAY

(kdf9@findlayw.plus.com)
0: INTRODUCTION
This note is a guide for users of ee9, a program emulating the EE KDF9 computer. Readers not yet familiar with the
KDF9 should consult the companion document, The English Electric KDF9.

ee9 is intended to be portable to any system that offers a basic POSIX API. It is written in Ada 2005 using the GNU
Ada compiler, GNAT GPL. To date, ee9 has been implemented on the Intel x86_64 and PowerPC G5 architectures
under OS X; on the Intel x86_32 and x86_64 architectures under Linux/FreeBSD; on the ARM11 architecture for the
Raspberry Pi under Raspbian (Debian Linux for ARM); and on the Intel x86_32 architecture under Microsoft Windows
(XP/SP3 or newer). For the particular characteristics of this version of ee9, see §6. Note that the command line syntax
for this version of ee9 differs from that of all previous versions.

1: ee9 COMMAND SUMMARY
The emulator is invoked from the command line, thus:

 ./ee9 { -ss | -dd | -m[m] } < program_file_name >TP0

where the - flag parameters are optional and can be given in any number or order; m is a short string that specifies a
miscellany of options; d specifies a diagnostic execution mode; and s is the initial CPU state for the KDF9 run.

The allowable state flag characters s are:
• b: for booting into Director state, which is how operating systems are loaded and run
• p: for problem program state, the default, allowing user programs to be run without a Director (see §2.2)
• t: for test program state, allowing programs to be run with OUTs serviced as in problem program state, but with

the CPU actually in Director state; though inauthentic, this is useful for running ‘hardware’ test programs.
The allowable diagnostic flag characters d are:

• f: for fast mode, the default
• p: for pause mode
• t: for trace mode
• x for external trace mode (see §2.1)

The allowable characters in the string m are described in §5.2.
Commands are available to simplify calls on ee9, in systems that support a bash-compatible shell. See Appendix 1.

EXAMPLES
./ee9 –dt –mn KMW0201—UPU # KMW0201—UPU is the Walgol compiler
./ee9 –sb KKT40E007UPU # KKT40E007UPU is the Timesharing Director

2: EMULATION MODES
2.1: DIAGNOSTIC MODES
A KDF9 program is run, at option, in one of four diagnostic modes. These are:

• fast mode; in which ee9 runs the program at maximum speed, with no execution tracing or interactive
diagnostic facilities available

• pause mode, in which ee9 single-shots the program, pausing to interact with the user after each instruction
• trace mode, in which ee9 runs the program at speed with extensive retrospective tracing enabled
• external trace mode, in which ee9 writes a summary of every traced instruction to an external file

More precisely, things work as follows.
In fast mode ee9 interacts with the user only by providing informative messages, either because the KDF9 program

has terminated, or to log significant events during the run (such as the allocation of an I/O device). All tracing overhead is
avoided in fast mode.

In pause mode ee9 uses console-window text I/O to interact with the user. After each instruction is executed a short
summary of the machine state is displayed and a prompt asks the user how to continue. The user replies with an optional
single letter (which may be given in upper case or lower case) followed by RETURN, selecting one of the following:

• f: execution proceeds in fast mode
• p: execution proceeds in pause mode
• t: execution proceeds in trace mode
• (nothing): execution proceeds in the current mode.

All retrospective tracing types described in §4 are available in pause mode, trace mode, and external trace mode; but
the manner of execution depends on whether the current instruction execution lies within a set range of addresses, and
within set instruction-count bounds. If so, instructions are added to their appropriate traces; and breakpoints and
watchpoints are monitored. If not, execution proceeds as in fast mode (but at about a third of the speed).

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

2

2.2: RUN STATES
The run state specifies how the emulated KDF9 is to run the program:

• In boot mode the KDF9 reads a 9-word bootstrap routine from TR0, then jumps to word 0, in Director state.
• In problem program mode ee9 reads into core, from TR0, a binary program prepared by a compiler (such as

David Holdsworth’s new Usercode cross-compiler). Its execution starts at word 0, in program state. ee9 itself
implements any OUTs requested by the program, so that it is not necessary to have a Director running.

• In test program mode ee9 reads a binary program into core from TR0, just as in problem program mode. Its
execution starts at word 0, but in Director state. The emulator implements any OUTs executed by the program.

2.3: BREAKPOINTS, FETCHPOINTS , AND STOREPOINTS
Certain addresses in core can be marked as breakpoints or as watchpoints, to force diagnostic interaction with the user. A
breakpoint is set on an instruction word, and causes interaction after an instruction beginning in that word has been
executed. A fetchpoint is set on a data word, and causes interaction after data has been fetched from that word. A
storepoint is set on a data word, and causes interaction after data has been stored into that word. A watchpoint combines
a fetchpoint and a storepoint on the same word.
2.4: AUTHENTIC TIMING MODE
At option, ee9 can be made to insert timed pauses into its execution so that the elapsed time of a program run by ee9
approximates the elapsed time of a run on the KDF9 hardware. This may be instructive for younger users, who have
never seen characters being output by a computer, one at a time, and with noticeable delays! This mode can be set using
the authenticity option setting or by means of the command-line miscellany parameter; see under ‘A’ in §5.

3: INPUTS AND OUTPUTS
3.1: EMULATED KDF9 I/O DEVICES
At the start of a run ee9 casts around for files to represent the virtual KDF9 peripherals. If no file can be found for a
peripheral, it may be reported to be ‘offline’. There are fixed assignments for the console Flexowriter, which is associated
with the user’s interactive terminal window; for paper tape reader 0, which is associated with the standard input; and for
paper tape punch 0, which is associated with the standard output.

Other devices are associated with files having names derived from the device type. Magnetic tape deck d, for
example, is always associated with the file named ‘MTd’. It will often be convenient to have file system links of these
names, which may be redirected for each run of the emulator to the actual data files to be processed on that occasion. The
full list of these associations is as follows:

• card punches are ‘CPd’
• card readers are ‘CRd’
• drum stores are ‘DRd’
• fixed disc stores are ‘FDd’
• graph plotters are ‘GPd’
• line printers are ‘LPd’
• KDF9 magnetic tape decks are ‘MTd’
• IBM seven-track tape decks are ‘STd’
• paper tape punches are ‘TPd’
• paper tape readers are ‘TRd’

3.2: THE FLEXOWRITER CONSOLE TYPEWRITER
The terminal window is the means by which users, in their rôle as KDF9 operators, can mimic Flexowriter I/O. The
Flexowriter is used to type-in responses to prompts output by problem programs or by Director. Repeatedly typing these
responses quickly becomes tedious. If a file named FW0 exists, it is used as a source of “canned” responses. They are
defined, with their identifying prompts, in FW0; and are picked up automatically by ee9. If a prompt spreads over more
than one line, a KDF9 Line Shift can be represented in FW0 by a ‘®’, and a KDF9 Page Change by a ‘©’.

When a prompt is issued, ee9 scans FW0, down from the last match found. If it finds a new match, it injects the given
response into the Flexowriter input stream; but if it reaches the end of the file without finding a match, it returns control
of the Flexowriter to the user’s terminal window, so that a manual response can be given. If a prompt matches a line in
FW0 that specifies a null response string (c.f. the second ‘OUT;’ in the following example) then ee9 terminates the run.

For example, the Whetstone Algol compiler prompts ‘OUT;’ to which a typical reply is ‘N.|’. If the Algol program
compiles, it runs and prompts ‘STREAM;’ to which a typical reply is ‘30.|’; but if the compilation fails the compiler
loops back to its ‘OUT;’ prompt, where the user will normally want to terminate the run so that the Algol source code can
be amended. The following data in FW0 will achieve this without user intervention:

OUT;N.|
STREAM;30.|
OUT;

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

3

For a second example, as the Time Sharing Director bootstraps into action it issues a series of requests for basic
configuration parameters. The following data in FW0 supplies suitable responses without user intervention:

CORE MODULES;8.|
OUT 8 REEL NO;9.|
LEVELS;N.|
DATE D/M/Y;4/5/67.|
TIME ON 24-HOUR CLOCK®HOURS/MINS;1/23.|

This facility had a real equivalent: the Flexowriter incorporated an ‘edge-punched card’ reader. It read data (in paper
tape code) from the edge of a non-standard punched card. Cards prepared with replies to prompts could be inserted into
the reader and read at the maximum rate, thus speeding input and avoiding any delay due to typing errors by the operator.

Note that ee9 requires every Flexowriter input string to be terminated by a RETURN, even when a read-to-End
Message instruction is being obeyed. In reality, KDF9 would end the transfer immediately at the End Message, or when
the required number of characters had been read; but data is not transferred to ee9’s input buffer until a RETURN is
typed. A purely terminating RETURN is discarded from the input buffer by ee9, and is not passed to the KDF9 program.

In response to CTRL-C, ee9 outputs a prompt of its own that lets the diagnostic mode be changed. Replying with a
RETURN (only) causes a FLEX interrupt; when running Director in boot mode, this evokes a ‘TINT;’ prompt.

Output to the KDF9 Flexowriter was typed in red; input from the computer operators was typed in black. This is
simulated in ee9 by using ANSI-terminal escape sequences to vary the displayed font colour. The Windows cmd
command-line utility does not implement ANSI terminal escape sequences, so Flexowriter I/O under Windows is
monochrome.
3.3: READING MORE THAN ONE ROLL OF PAPER TAPE OR DECK OF CARDS
A means is provided to simulate the way in which KDF9’s computer operators could satisfy a program’s demand for data
with several physically-separate rolls of paper tape, loaded into a tape reader in succession. If a program attempts to read
from a tape reader, and the end of the associated file has been reached, ee9 allows the user to specify a successor file to
which the paper tape reader is re-attached. These files are named ‘TRdr’ where d is the device number (0 or 1) and r is a
letter identifying the “roll of tape”. On reaching the end of the current file, ee9 asks for the next letter r; if none is given
the reader is left in the ‘abnormal’ condition and any further attempt to read from it provokes a parity error. Again, it may
be convenient for the files ‘TRdr’ to be realized as links to actual data files with more mnemonic names. See the ‘N’
option in §5 about the disabling of this feature in non-interactive mode.

The above also applies, mutatis mutandis, to the punched card reader. Lines of less than 80 characters are padded with
blanks to fill all 80 columns of the card; any line longer than a card is truncated. In ‘direct’ mode, lines may have up to
160 characters, notionally two per column. Any attempt to read a character not in the card set causes a parity error. (The
card punch always generates files suitable as input to the card reader.)
3.4: REPRESENTING THE KDF9 CHARACTER SETS
External data is read and written in the ISO Latin-1 character set, with automatic conversion between Latin-1 and KDF9’s
internal character codes (which are somewhat device-dependent). Several graphic characters in the KDF9 paper tape set
are absent from Latin-1, so a simple transliteration is used to represent them externally. See Appendix 2. The break
character is used for the non-escaping KDF9 underline, so that an Algol 60 reserved word such as ‘real’, seen on KDF9
as ‘real’, appears as ‘_r_e_a_l’, and an underlined End Message, ‘→’, appears as ‘_|’.

In the case of the Flexowriter, tape punches, and tape readers, Case Normal and Case Shift characters are generated on
input, and interpreted on output. This means that when you are typing an input text, it is not necessary to type Case
Normal and Case Shift characters, although it does no harm to do so. When such a text is being read as the input stream
for a two-shift device, an appropriate case-character is generated automatically by the emulator, if the Latin-1 character
being read is not available in the input device’s current shift state. Two-shift devices always start out in the Case Normal
condition. For example, the external Latin-1 string ‘Bill Findlay’ is read into the KDF9 core store as the characters
‘BßILL ñFßINDLAY’, with ß denoting the Case Shift character and ñ denoting the Case Normal character. A KDF9
program that writes the characters ‘BßILL ñFßINDLAY’ to a two-shift device will generate the Latin-1 string
‘Bill Findlay’ as its external representation.

Text-file input to ee9 may use any of CR, LF, or a CRLF pair as the line terminator: ee9 treats all three the same.
Text-file output from ee9 writes the line terminator most appropriate for the host OS.

Non-graphic KDF9 characters also have Latin-1 external representations, to enable faithful 1-to-1 conversion between
the internal and external data formats. Apart from the format effectors (Horizontal Tab, New Line, Form Feed), users
should never need to type these characters, as they could not be typed on a Flexowriter.

Characters are displayed in tracing output and core dumps using the line printer code, except as follows:
• the KDF9 Tab character is represented by ¬
• the KDF9 Carriage Return character is represented by ®
• the KDF9 Page Change character is represented by ©
• the KDF9 Filler, and other non-legible characters, are represented by Ø

Bootable Directors and compiled problem programs are not encoded in Latin-1, but natively, in the KDF9 paper tape
code. They use an 8-bit byte to encode 6 data bits; 8 of these bytes are packed into a 48-bit KDF9 word.

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

4

3.5: GRAPH PLOTTING
ee9 includes an emulation of the model 564 Calcomp graph plotter, as described in Appendix 6, §5, p.302 of the Manual.
There was provision on the KDF9 to switch a buffer manually between a tape punch and a graph plotter; in ee9 this is
done with a settings file option, G, or by including g in the miscellany parameter. When either of these is given, GP0
replaces TP1 on the shared buffer.

The KDF9 graph plotter takes commands that move the plotting position in steps of 0.005 inches; see Appendix 3 for
the equivalent character codes. These are accumulated into vectors by ee9, and PostScript vector drawing commands are
output to the GP0 file. It is possible to ‘fit’ the plotter with pens having a variety of ink colour and ball-point tip size. See
under ‘G’ in §5.

This program:

V9; W0;
RESTART; J999; J999;
PROGRAM;
 V1 = B20; (plotter pen-down command);
 V2 = Q0/AV1/AV1; (to plot data);
 V3 = Q0/AV1/AV1; (to read data);
 V4 = B02; (TR device-type code);
 V5 = B20; (GP device-type code);

 V4; SET 5; OUT; (claim TR);
 V3; =Q3; =C3; (set up Q3 for TR input);
 V5; SET 5; OUT; (claim GP);
 V2; =Q2; =C2; (set up Q2 for GP output);
 POCQ2; (pen down);
*1;
 PICQ3; (read one plotting command from TR);
 PARQ3; J999TR; (exit loop to 999 at EOF);
 POCQ2; (write one plotting command to GP);
 J1;
999;
 ZERO; OUT; (end run);
FINISH;|

can be run at the command line as follows (edited for convenience):

/Users/wf/KDF9/emulation/Testing: nine TR2GP wabbit_kdf9 - g
Welcome to ee9 V2.0q, the GNU Ada KDF9 emulator.
The shared buffer has been switched from TP1 to GP0.
...
ee9: OUT 5: requests a device of type #02; gets TR1.
ee9: OUT 5: requests a device of type #20; gets GP0.
...
ee9: OUT 0: end of run.
__
Final State:

At #00032/1 (26/1); ICR = 1688326; the instruction was #200:220:000, i.e. OUT
CIA: #00032/1 (26/1)
NIA: #00032/4 (26/4)
ORDERS: 1688326 executed (ICR)
CPU TIME: 25465440 KDF9 us. (RAN)
CLOCK TIME: 1732422678 KDF9 us. (EL)

The SJNS is empty.

Q store:
 Q2: Q #000003/ #000011/ #000011 = Q 3/ 9/ 9
 Q3: Q #000002/ #000011/ #000011 = Q 2/ 9/ 9

The NEST is empty.
__
End of Run.
TR1 on buffer #02 read 281384 character(s).
GP0 on buffer #03 plotted 281385 character(s).
__

It copies the file of plotter commands named wabbit_kdf9.txt from a tape reader to the graph plotter, producing the
following charming portrait (after conversion to PDF from the output Encapsulated PostScript—EPS— format):

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

5

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

6

4: TRACING AND LOGGING
Messages that record the progress of the emulation, and details of any errors that were detected, are written to the
interactive console window, along with interactive diagnostics and output intended for the KDF9 Flexowriter. A selection
of these messages is also written to the file KDF9_log.txt. On completion of a run, the final machine state, any
requested core store areas, and any retrospective traces may be written to the log file and to the console window.

It is possible to request the output of certain areas of the KDF9’s core store, in a variety of suitable formats. These
printouts can be taken either before the start of execution; or on termination; or at both times, to allow comparisons.

The tracing of instructions is subject to instruction-count and address-range bounds. Instruction executions within
those bounds are traced; those that fall outside the bounds are not.

In the interrupt trace, which is produced only in boot mode, interrupt requests are listed with the privilege state and
priority of the interrupting device; the elapsed time of occurrence (in µs); and the value of ICR, the Instruction Count
Register, which is a count of the number of instructions executed so far. See, e.g.:
Retrospective trace of interrupt requests.
 CPL EL. TIME ICR
Ended #03455/2: EDT D 0 @ 69589893 3376330
After #03555/3: EDT D 0 @ 69589259 3376231
After #03555/3: EDT D 0 @ 69588608 3376134
After #02534/3: FLEX D 0 @ 69578533 3374471
...
After earlier interrupts, whose tracing is now lost.

In the peripheral I/O trace, the events shown are transfer initiations and terminations, busy-buffer and store-access
lockouts, and I/O status test operations. Each is listed with the device name, Q-store parameter, privilege state (P for
problem program state and D for Director state) and priority of the transfer; the elapsed time of occurrence of the event;
and the value of ICR. The C part of the parameter used in a FD seek operation is logged in the format DdPppSss, where
d, pp and ss are, respectively, the drive number, platter number and seek area number being addressed. In a FD data
transfer operation d and pp are irrelevant and ss is the starting sector number for the transfer.

Transfer operations appear twice, once for the initiation (S) and once for the termination (E).
Lockouts appear once, when they happen.
A test operation gives the result of the test as a Boolean. See, e.g.:

Retrospective trace of peripheral I/O events.
 CPL EL. TIME ICR
Ended #00021/5: POEQ13 TP0 Q#4/#0/#454 P 0 S 1654305064 306451950
After #00132/5: POBQ14 TP0 Q#4/#72235/#72432 P 0 E 1654305003 306451936
After #00133/1: E#72235M7Q TP0 Store Lockout at #72235 @ 1654295945 306451936
After #00132/5: POBQ14 TP0 Q#4/#72235/#72432 P 0 S 1654295913 306451936
After #00132/3: PIBQ15 TR1 Q#2/#72235/#72432 P 0 E 1654295913 306451934
After #00132/5: POBQ14 TR1 Store Lockout at #72235 @ 1654294945 306451934
After #00132/3: PIBQ15 TR1 Q#2/#72235/#72432 P 0 S 1654294913 306451934
After #00157/5: POAQ14 TP0 Q#4/#72235/#72235 P 0 E 1654294913 306451912
After #00132/3: PIBQ15 TP0 Store Lockout at #72235 @ 1654222370 306451932
After #00157/5: POAQ14 TP0 Q#4/#72235/#72235 P 0 S 1654222193 306451912
After #00132/5: POBQ14 TP0 Q#4/#72235/#72432 P 0 E 3907366 1493
After #00133/1: E#72235M7Q TP0 Store Lockout at #72235 @ 2989908 1493
After #00132/5: POBQ14 TP0 Q#4/#72235/#72432 P 0 S 2989276 1493
After #00132/3: PIBQ15 TR1 Q#2/#72235/#72432 P 0 E 2989276 1491
After #00132/5: POBQ14 TR1 Store Lockout at #72235 @ 2888908 1491
After #00132/3: PIBQ15 TR1 Q#2/#72235/#72432 P 0 S 2888276 1491
After #00132/5: POBQ14 TP0 Q#4/#72235/#72432 P 0 E 2881121 145
After #00133/1: E#72235M7Q TP0 Store Lockout at #72235 @ 2808475 145
After #00132/5: POBQ14 TP0 Q#4/#72235/#72432 P 0 S 2808401 145
After #00132/3: PIBQ15 TR1 Q#2/#72235/#72432 P 0 E 2808401 143
After #00132/5: POBQ14 TR1 Store Lockout at #72235 @ 2800475 143
After #00132/3: PIBQ15 TR1 Q#2/#72235/#72432 P 0 S 2800401 143
After #00132/5: POBQ14 TP0 Q#4/#72235/#72432 P 0 E 2799816 28
After #00133/1: E#72235M7Q TP0 Store Lockout at #72235 @ 2727170 28
After #00132/5: POBQ14 TP0 Q#4/#72235/#72432 P 0 S 2727096 28
After #00020/0: POEQ13 TP0 Q#4/#0/#454 P 0 E 2727096 16
After #00132/3: PIBQ15 TR1 Q#2/#72235/#72432 P 0 E 8162 27
After #00132/5: POBQ14 TP0 Buffer Lockout @ 236 27
After #00132/3: PIBQ15 TR1 Q#2/#72235/#72432 P 0 S 162 27
After #00020/0: POEQ13 TP0 Q#4/#0/#454 P 0 S 96 16
After #00000/0: #000 TR0 Q#1/#0/#17777 P 0 S 0 1
After the start of traced execution.
Total time waiting for unoverlapped I/O to finish = 3980ms.

In the retro trace, instructions are listed in order, starting with the most recently executed. The trace includes the
instruction itself, and its most relevant operand; ‘ND’ and ‘SD’, the Nest and SJNS Depths; ‘V’ and/or ‘T’ showing
whether overflow and/or the test register is set; the CPU time of occurrence of the event; and the value of ICR.

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

7

In the case of a store order, the traced operand is the value written to store. In the case of a fetch order, it is the value
fetched. For a Q-store order, it is the content of the relevant Q register. For a conditional jump it is the determining value.
For subroutine jump or exit, it is the relevant value in the SJNS. For a 1-syllable or 2-syllable ALU order, it is the value
left in the top of the nest. And so on. See, e.g.:

Retrospective trace of all instructions.
 ND SD VT CPU TIME ICR
Ended #00023/4: OUT 0 3 0 V 1650324654 306451955
After #00023/3: ZERO #0000000000000000 4 0 V 1650324641 306451954
After #00023/0: OUT 4 3 0 V 1650324639 306451953
After #00022/3: SETB6 #0000000000000006 5 0 V 1650324626 306451952
After #00022/1: C13 #0000000000000004 4 0 V 1650324615 306451951
After #00021/5: POEQ13 Q#4/#0/#454 3 0 V 1650324610 306451950
After #00136/5: EXIT 2 #00020/5 3 0 V 1650324591 306451949
After #00136/2: J#00137/2NE #0000000000000035 3 1 V 1650324572 306451948
After #00135/5: SETB35 #0000000000000035 4 1 V 1650324567 306451947
After #00135/2: J#00133/5LTZ #0000000000000035 3 1 V 1650324563 306451946
After #00135/1: DUP #0000000000000035 4 1 V 1650324559 306451945
After #00135/0: - #0000000000000035 3 1 V 1650324557 306451944
After #00134/3: SETB40 #0000000000000040 4 1 V 1650324556 306451943
After #00134/1: SHLD+6 #0000000000000075 3 1 V 1650324545 306451942
After #00134/0: ZERO #0000000000000000 3 1 V 1650324542 306451941
After #00133/5: ERASE #7500000000000000 2 1 V 1650324540 306451940
After #00133/4: DUP #7500000000000000 3 1 V 1650324539 306451939
After #00133/1: E#72235M7Q #7500000000000000 2 1 V 1650324537 306451938
After #00132/5: POBQ14 Q#4/#72235/#72432 1 1 V 1650324530 306451936
After #00132/3: PIBQ15 Q#2/#72235/#72432 1 1 V 1650324498 306451934
After #00132/1: IM15TOQ14 Q4/#72235/#72432 1 1 V 1650324466 306451932
After #00131/5: =M15 Q2/#72235/#72432 1 1 V 1650324462 306451931
After #00131/4: + #0000000000072432 2 1 V 1650324453 306451930
After #00131/2: I15 #0000000000072235 3 1 V 1650324452 306451929
After #00130/5: SETB175 #0000000000000175 2 1 V 1650324446 306451928
...
After #00067/0: J#00075/0 #00075/0 3 1 V 1650323316 306451720
After #00066/0: EXITAR#00066/0 1 3 1 V 1650323308 306451719
After #00065/3: E#252M3 #0073200337002007 3 2 V 1650323296 306451718
After #00065/0: E#253M3 #0067500321201506 2 2 V 1650323290 306451717
After #00064/4: =LINK #00001/0 1 2 V 1650323284 306451716
After #00064/2: M1 #0000000000000001 2 1 V 1650323274 306451715
After #00064/0: =M3 Q0/#0/#3752 1 1 V 1650323270 306451714
After #00063/5: + #0000000000003752 2 1 V 1650323268 306451713
After #00063/4: DUP #0000000000001765 3 1 V 1650323267 306451712
After #00063/2: M2 #0000000000001765 2 1 V 1650323265 306451711
After earlier instructions, whose tracing is now lost.

External trace mode is like retro mode, with additional output to the file trace.txt. This output has one line for
each traced instruction. It contains: the instruction’s address; the value of ICR; the CPU time; the nest depth; the SJNS
depth; ‘V’ and/or ‘T’ if overflow and/or the test register is set; the value in N1, if the nest if non-empty; and the
disassembled instruction. For example:

LOCATION ICR CPU TIME ND SD VT [N1] |INSTRUCTION
#00000/0 1 8 0 0 |J#00012/0
#00012/0 2 12 1 0 #0000000000000002 |SETB2
#00012/3 3 19 2 0 #0000000000000005 |SETB5
#00013/0 4 32 1 0 #0000000000000002 |OUT
#00013/3 5 35 0 0 |=C15
...
#00236/2 3439084 19706693 1 2 V #0000000000000004 |JS#00063/2
#00063/2 3439085 19706697 2 2 V #0000000000001243 |M2
#00063/4 3439086 19706699 3 2 V #0000000000001243 |DUP
#00063/5 3439087 19706703 2 2 V #0000000000002506 |+
#00064/0 3439088 19706705 1 2 V #0000000000000004 |=M3
#00064/2 3439089 19706709 2 2 V #0000000000000001 |M1
#00064/4 3439090 19706715 1 3 V #0000000000000004 |=LINK
#00065/0 3439091 19706721 2 3 V #0000000000000000 |E#253M3

 (etc)

When tracing, and if requested, ee9 will tally the number of traced executions of each type of KDF9 instruction. On

termination a HISTOGRAM of dynamic instruction-type frequencies is logged, grouped according to their first syllable, but
with jump instructions further analysed according to bits 0:3 of their second syllable. Output is along these lines:

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

8

Histogram of 74907338 executed instructions.
001: VR 1349842 1.80% |##
002: =TR 141 0.00% |
003: BITS 140 0.00% |
004: ×F 54287 0.07% |
007: ×+F 3200 0.00% |
011: OR 162724 0.22% |
012: PERM 339174 0.45% |
013: TOB 4 0.00% |
015: NEV 220963 0.29% |
016: ROUND 996 0.00% |
017: DUMMY 117798 0.16% |
020: ROUNDF 640 0.00% |
024: FLOAT 10301 0.01% |
025: FLOATD 640 0.00% |
026: ABS 228 0.00% |
027: NEG 669831 0.89% |#
030: ABSF 70 0.00% |
031: NEGF 1302 0.00% |
033: NOT 81859 0.11% |
034: ×D 14918 0.02% |
035: × 5668 0.01% |
036: - 942288 1.26% |#
041: ZERO 357578 0.48% |
042: DUP 4075828 5.44% |#####
043: DUPD 444854 0.59% |#
044: DIVI 63 0.00% |
045: FIX 14443 0.02% |
047: STR 1276 0.00% |
050: CONT 16037 0.02% |
051: REVD 46657 0.06% |
052: ERASE 1592562 2.13% |##
054: AND 2435234 3.25% |###
056: + 2421985 3.23% |###
060: DIV 17040 0.02% |
062: DIVF 12055 0.02% |
065: REV 2586523 3.45% |###
066: CAB 525540 0.70% |#
067: FRB 99 0.00% |
074: +F 45208 0.06% |
075: -F 48273 0.06% |
077: SIGNF 5118 0.01% |
100: MkMq 1216889 1.62% |##
101: =MkMq 555 0.00% |
102: MkMqQ 19153 0.03% |
103: =MkMqQ 919 0.00% |
104: MkMqH 34800 0.05% |
105: =MkMqH 1 0.00% |
110: MkMqN 1214714 1.62% |##
111: =MkMqN 321 0.00% |
113: =MkMqQN 791 0.00% |
115: =MkMqHN 1 0.00% |
121: PARQq 23 0.00% |
125: {PIB|PID}Qq 23 0.00% |
140: M+Iq 903910 1.21% |#
141: M-Iq 190303 0.25% |
142: NCq 2427858 3.24% |###
143: DCq 1111869 1.48% |#
144: Iq=+1 60709 0.08% |
145: Iq=-1 22 0.00% |
146: Iq=+2 60499 0.08% |
151: MqTOQk 137796 0.18% |
152: IqTOQk 736 0.00% |
153: IMqTOQk 157 0.00% |
154: CqTOQk 45468 0.06% |
155: CMqTOQk 65 0.00% |
156: CIqTOQk 153 0.00% |
157: QqTOQk 1629 0.00% |
161: SHA 88702 0.12% |
162: SHAD 2732 0.00% |
164: SHL 3901990 5.21% |#####
166: SHLD 1315112 1.76% |##
167: SHC 1197056 1.60% |##

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

9
170: =[R]{Q|C|I|M}q 3830292 5.11% |#####
171: {Q|C|I|M}q 3807638 5.08% |#####
172: =+{Q|C|I|M}q 2864012 3.82% |####
173: LINK 1181086 1.58% |##
174: =LINK 1295344 1.73% |##
177: JCqNZS 1130 0.00% |
201: JrNE 490689 0.66% |#
202: JrGEZ 34643 0.05% |
204: JrLEZ 114912 0.15% |
206: JrNEZ 571088 0.76% |#
210: JrNV 45523 0.06% |
211: OUT 65 0.00% |
212: JrNEN 1180184 1.58% |##
213: Jr 3286319 4.39% |####
215: JSr 2401324 3.21% |###
216: JrNTR 163 0.00% |
217: EXIT 2515582 3.36% |###
221: JrEQ 162658 0.22% |
222: JrLTZ 1882578 2.51% |###
224: JrGTZ 1316461 1.76% |##
226: JrEQZ 1617383 2.16% |##
230: JrV 125134 0.17% |
232: JrEN 855 0.00% |
234: JrEJ 98 0.00% |
240: JrCqZ 90496 0.12% |
260: JrCqNZ 299249 0.40% |
300: EeMq 4499638 6.01% |######
301: =EeMq 1920821 2.56% |###
302: EeMqQ 8998 0.01% |
303: =EeMqQ 57313 0.08% |
304: SET 6837815 9.13% |#########

At option, all tracing modes can compute a digital SIGNATURE of the execution: a 48-bit cumulative hash, displayed in

octal, of the contents of all the relevant KDF9 registers (nest, SJNS and Q stores) at the end of each traced instruction.
Known values for this hash can be used as a digital signature to verify the proper operation of an implementation of ee9.
(When the signature is enabled, the time-of-day is forced to midnight, to produce a repeatable hash value.)

5: THE MODE SETTINGS FILES AND MISCELLANY PARAMETER
The emulator has default settings for all of its options, but they may be over-ridden by settings specified in files that the
emulator attempts to read as part of its initialization, and/or by specifying a miscellany parameter on the command line.
5.1: SETTINGS FILES
The file settings_1.txt applies to a first or sole program to be run, and settings_2.txt applies to a second
program overlaid by it (e.g. the Whetstone Controller, overlaid after a successful compilation by the Translator). A setting
specified by the command line over-rides a similar option specified in the settings_1.txt file.

The settings files contain a line for each option to be set, beginning with a letter that specifies the option concerned.
This may be followed by one or two parameters. Address parameters may be given either in octal—preceded by a hash
sign (‘#’)—or in decimal; and this convention is also used systematically in output messages from the emulator. The
options are presented here in upper case, but lower/mixed case is also accepted. The available options are as follows:
A LAX_MODE | STRICT_MODE | AUTHENTIC_TIME_MODE
The A flag sets aspects of the AUTHENTICITY of execution. It takes one symbolic parameter.
It is possible to set the strictness that ee9 applies to checking for misused register operands, with a parameter that is
either LAX_MODE or STRICT_MODE. In STRICT_MODE an operation with n operands always fails if the nest depth is
less than n. In LAX_MODE such an operation fails if, and only if, it further reduces the nest depth. The latter more closely
approximates the behaviour of the KDF9 nest hardware. This mode also affects instructions that attempt to change the
value of Q store 0, which was hardwired to a constant 0 and ignored updates. In LAX_MODE an assignment to Q0 is
suppressed, which is what the hardware did; in STRICT_MODE it is treated as an execution error (unless running in
Director state), which is a diagnostic more likely to be useful.
It is also possible to set authentic elapsed timing (see §2.4), with the AUTHENTIC_TIME_MODE parameter.
B start [end]
This flag has either one or two parameters, which are instruction-word addresses. It sets a BREAKPOINT on every
instruction word in the given range of addresses.

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

10

C l h
This flag is used to set two COUNT values, say l and h, that determine when tracing is done. No breakpoint or watchpoint
fires, and no instruction is traced, unless l ≤ i ≤ h is satisfied; where i is the current value of ICR. With suitable l and h
values, tracing can confined to a set time during execution (for example, the last few instruction executions before a
program fails). The values l and h are given as unsigned decimal integers.
D FAST_MODE | TRACE_MODE | PAUSE_MODE | EXTERNAL_MODE
This flag sets the DIAGNOSTIC mode, specifying the type of tracing and the kind of logging that may be generated.
F start [end]
This flag has either one or two parameters, which are data-word addresses. It sets a FETCHPOINT on every word in the
given range of addresses.
G [colour [tip size]]
This flag allows one or two optional symbolic parameters. The first, if given, sets the GRAPH PLOTTING pen colour from
the list: BLACK (the default), BLUE, BROWN, CYAN, DARK_BLUE, DARK_CYAN, DARK_GREEN, DARK_GREY,
DARK_MAGENTA, DARK_RED, GREEN, GREY, MAGENTA, RED, WHITE, YELLOW. If a colour is given, a second
parameter may be given to set the pen tip size from the list: EXTRA_EXTRA_FINE (the default, 1 plotter step wide),
EXTRA_FINE (2 steps wide), FINE (4 steps), MEDIUM (6), MEDIUM_BROAD (8), BROAD (10), EXTRA_BROAD (12).
In any case, the shared buffer is switched from TP1 to GP0.
Ii start end
Pi start end
These flags have two parameters, which are word addresses. They request that the contents of that range of addresses be
output in a specified interpretation, INITIALLY, or POSTMORTEM (i.e. after the end of the run).
For both Ii and Pi, the interpretation is given by the string of letters i, each letter of which must be one of: A, for strings
in ASCII/LATIN-1 code; C, for strings in card code; L, for strings in LINEPRINTER code; N, for strings in paper tape code,
with case NORMAL shown; S, for strings in paper tape code, with case SHIFT shown; T, for strings in paper TAPE code,
with both cases shown; O, for syllabic OCTAL/ ORDERS; U, for orders in pseudo-USERCODE format; and W, for data WORDS
in octal, syllabic octal, line printer characters, Q store format, and signed decimal.
When U is specified, D can also be given to display machine code addresses in DECIMAL instead of octal. For an example
of pseudo-Usercode format, see Appendix 4.
The PIC, PID, POC and POD instructions for cards and paper tape permit the processing of data in arbitrary character
codes. The A format for core-store printing is provided to facilitate the debugging of modern KDF9 programs that process
data in ASCII/Latin-1, the native character set of ee9.
L t
This flag is used to set a value, say t, that specifies an execution time LIMIT. This determines how long the KDF9
program is allowed to execute before being terminated. The limit is specified in instruction executions rather than
seconds, so the program is terminated if ICR > t at the end of any instruction execution. The value t is given as an
unsigned decimal integer.
N [t]
The N flag has one optional parameter, with the same meaning at the t parameter of the L flag. It makes ee9 run in NON-
INTERACTIVE mode, suitable for invocation from a command script. In this mode it is not possible to supply responses to
prompts, whether from the KDF9 program or from ee9 itself; so if an interactive input is requested in non-interactive
mode, ee9 terminates with a suitable diagnostic message. If the N flag is given without a parameter, or on the command
line, the time limit is taken to be the default time limit for non-interactive mode (see §6).
R a b
This flag is used to set two addresses, say a and b, that delimit the RANGE of instructions where tracing is done. No
breakpoint or watchpoint fires, and no instruction is traced, unless a ≤ i ≤ b is satisfied; where i is the address of the word
containing the instruction to be executed. With suitable a and b values, instruction tracing can confined to the sequence of
instructions that you are currently debugging.
S start [end]
This flag has either one or two parameters, which are data-word addresses. It sets a STOREPOINT on every word in the
given range of addresses.
T BOOT_MODE | PROGRAM_MODE | TEST_PROGRAM_MODE
This flag is used to set the TEST mode, specifying the kind of run.
V [-] {ADEFHIPRSTZ}
The V flag is used to set the VISIBILITY of diagnostic output, by stating the set of traces that are to be suppressed. It takes
a parameter which optionally starts with ‘-’, followed by a selection of the letters: ‘A’ to suppress Director API messages,
‘E’ to suppress confirmatory or warning messages, but not error messages, from ee9, ‘F’ to suppress the FINAL STATE of
the KDF9 at the end of a run, ‘H’ for the HISTOGRAM, ‘I’ for the INTERRUPT trace, ‘P’ for the PERIPHERAL I/O trace, ‘R’
for the RETRO trace, and ‘S’ for the digital SIGNATURE. ‘Z’ combines the effects of all the output-suppression options.
A trace is output if it is provided by the requested diagnostic mode, and its output is not suppressed.
The default is that all traces provided by the diagnostic mode are to be output, i.e. not suppressed.

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

11

The option ‘D’ can be given with the V flag, to enable the output of any optional DEBUGGING output.
The option ‘T’ can be given with the V flag, to enable execution with authentic TIMING (see §2.4).
W start [end]
This flag has either one or two parameters, which are data-word addresses. It sets a WATCHPOINT (i.e., a FETCHPOINT and
a STOREPOINT) on every word in the given range of addresses.
5.2: THE MISCELLANY PARAMETER
The options permitted with the miscellany parameter are as follows: adefghilnprstz123456789. The letters gln
correspond with settings file commands G, L and N, with the defaults stated above for their optional parameters. The
letters adefhiprstz correspond with settings file visibility options. A digit d requests an execution time limit of
d0_000_000 instructions. The miscellany parameter is scanned and put into effect from left to right.

6: IMPLEMENTATION CHARACTERISTICS AND CAVEATS
The defaults for the settable options in the present implementation of ee9 are as follows:

• the default test mode is PROGRAM_MODE
• the default diagnostic mode is FAST_MODE
• the default diagnostic visibility generates all traces, the digital signature, and the histogram
• the default is to run interactively; that is, with non-interactive mode disabled
• the default register checking mode is STRICT_MODE
• the default elapsed time mode is not AUTHENTIC_TIME_MODE
• the default time limit allows for effectively unlimited execution
• the default time limit in non-interactive mode is 100 million instruction executions.
• the default count bounds, l and h, are 0 and the time limit, respectively
• the default range bounds, a and b, are #0 and #7777, respectively
• no breakpoint, fetchpoint, storepoint, or core dump is pre-set
• the shared buffer is switched by default to TP1, not GP0
• the default graph plotter pen colour is BLACK
• the default graph plotter pen tip is EXTRA_EXTRA_FINE (1 plotter step wide)

The following features of KDF9 remain to be implemented:
• all I/O instructions for the DR and ST device types
• the PIE, PIF, PIG, PIH, PMH, POG, and POH instructions for the FD device type
• the PMG, PMK, PML, POK, and POL instructions (for all device types other than CP, which has POK and POL)
• Time Sharing Director OUTs other than OUTs 0 through 10, and OUT 17

KDF9’s nest-depth checking caused a NOUV interrupt after the maximum or minimum depth had been transgressed.
Presently, ee9 checks for all of these violations before the offending instruction is executed. This makes little difference
in practice. KDF9 had ‘imprecise’ interrupts, which made recovery from a NOUV error impossible: Director could do no
more than terminate (or perhaps restart) the offending program. (See also the A option setting, §5.)

There is some doubt as to the semantics of the various division instructions, particularly with respect to rounding, and
their behaviour on overflow and on division by zero (other than setting the overflow bit).

All of the I/O instructions that apply to EE model 1081 magnetic tape decks (the most common kind) have been
implemented, with the important restriction that data blocks are limited to at most 512 words (4K bytes) in length. I hope
to lift this restriction in a future release.

There is considerable doubt as to the correct instruction encoding, and precise effects, of the PMG, PMH, PMK, PML,
POK, and POL orders, which are listed in the KDF9 Programming Manual but not well defined therein, nor in any other
source presently known.

It is assumed that the POF order for the TP device type has exactly the same functionality as the POE order.
It is assumed that the POC and POD orders for the Flexowriter change from writing to reading after the output of any

word that has the KDF9 paper tape code for a semicolon (348) in its least significant six bits.
It is assumed that the POB and POD orders for the graph plotter have the same effect as POA and POC, respectively, as

the Manual says that the plotter did not respond properly to an End Message character.
It is assumed that the device type code for the graph plotter to be used with OUT 5 is octal 20, i.e. 16.
It is assumed that the graph plotter pen tip sizes are the same as those of pens currently on sale.
It is assumed that the fixed-head area of the FD device type is platter 0, seek area 0.
Many other hypotheses have been put into effect in the implementation of the FD device; it remains to be seen

whether these are justified.

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

12

ACKNOWLEDGEMENTS
I am grateful to the group of supporters, all enthusiastic former KDF9 engineers, programmers, or satisfied users, for their
encouragement during this project; and for their superb work in recreating a software ecosystem for ee9 to run. I thank in
particular David Hawley and Brian Randell, for their crucial caches of EE documents; David Holdsworth for his
Usercode compilers and hardware insight; David Holdsworth, Brian Wichmann, Graham Toal, and Roderick McLeod for
resurrecting the Whetstone Algol system; and David Holdsworth, Mike Hore, and Bill Gallagher for compiling and
testing ee9 ports. Others, too numerous to list, know who they are: to them also, my thanks.

The plotter command file wabbit_kdf9.txt, used to create the example plot in §3.5, I code-converted to KDF9
plotting code from an ICL 1900 Series plotter test file made available by Bill Gallagher.

REFERENCES

Available at: http://www.findlayw.plus.com/KDF9

The English Electric KDF9; W. Findlay, 2011.

The Hardware of the KDF9; W. Findlay, 2010.

The Software of the KDF9; W. Findlay, (in preparation).

KDF9 Programming Manual, Publication 1002 mm (R); International Computers Ltd., 2nd Edition, October 1969.

KDF9 ALGOL programming, Publication 1002 mm (R) 1000565; J.S. Green, English Electric-Leo-Marconi
Computers Ltd.

See also: http://www.findlayw.plus.com/KDF9/#Emulator which is updated periodically with ee9 news;
and the README and HOWTO files, included in the distribution of ee9.

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

13

APPENDIX 1: USING ee9 MORE CONVENIENTLY
To reduce the typing required to invoke ee9 correctly, I provide a set of bash command files, namely nine_test,
nine, whet and tsd. These are kept in the Testing directory of the ee9 distribution, along with a number of auxiliary
command files. Usercode source programs and their data files are kept in Testing/Assembly; Algol source programs
and data files are kept in Testing/Algol; and compiled Usercode programs are kept in Testing/Binary. To facilitate
the assembly of Usercode programs, I also supply the ucc command. This provides a convenient harness for kal3,
David Holdsworth’s new Usercode compiler; it takes the source program from Assembly and places the object program
in Binary. All of these programs expect to be executed from the Testing directory. Using these commands on
Microsoft Windows requires a bash-compatible shell, such as the one included in Cygwin.

ucc prog
This command compiles a Usercode source program using the kal3 assembler. The source code is taken from
Assembly/prog.k3 and the object program is placed in Binary/prog.kdf9, while a compilation listing is stored in
Assembly/prog-listing.txt.
EXAMPLE
• To compile Assembly/HiGuys.k3:
 ./ucc HiGuys

nine prog {data | - } [{mode | - } [miscellany]]
This command runs a binary KDF9 problem program, as previously compiled using ucc or kal3. The program is taken
from Binary/prog.kdf9; the data file for TR0, if required, is taken from Assembly/data.txt. The mode and
miscellany parameters are as described for f and m in §1 (but note the different format); the defaults are as for ee9 itself.
If fast mode is explicitly requested, nine measures the time taken by the execution of the program.
EXAMPLE
To run Binary/Leech.kdf9 in default mode; but with all logging output suppressed, taking its TR0 data from
Assembly/Leech_data9.txt, in non-interactive mode so that reading past the end of data forces termination, and with
the shared buffer (pointlessly) switched to GP0:

 ./nine Leech Leech_data9 - gnz

Result:

TP0:
===
AEFDBC
|
A
B
C
|
CCC
FACA
DFDC
DBDB
FBCEE
BBBBBBB
AEABAEAB
AEEAEABBB
ADADADADAD
ABCDEABCDEABCDEABCDEABCDEABCDEABCDE
|
 1045|
===

nine_test prog {data | - } [{mode | - } [miscellany]]
This command operates exactly like the nine command, except that the program is executed in test_program mode.

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

14

whet prog [{mode | - } [miscellany]]

This command runs the Whetstone Algol system on the Algol 60 program and its ‘stream 10’ input data, both held in the
file Algol/prog.a60 and read in turn by the Translator and the Controller. The mode and miscellany parameters are as
described for nine.
EXAMPLE
To compile and run the historical Whetstone Benchmark, Algol/Whetstone.a60, in the (timed) fast mode:

 ./whet Whetstone f

Result:
Welcome to ee9 V2.0q, the GNU Ada KDF9 emulator.
Running a problem program in fast mode (without diagnostics).
__
OUT;N.|

ee9: OUT 5: requests a device of type #02; gets TR1.
WHETSTONEBMK|
RAN/EL/000M05S/000M15S SIZE 603
ee9: OUT 8: closes stream #10.
ee9: OUT 6: releases TR1.

ee9: OUT 1: ICR = 813081; RAN/EL = 4816503 / 20242121 KDF9 us.
ee9: OUT 1: the Whetstone Controller overlays the Translator.
Running a problem program in fast mode (without diagnostics).
__
STREAM;30.|
AD - S
ee9: OUT 8: closes stream #30.

AD 30 CLOSED
RAN/EL/006M56S/006M57S
ee9: OUT 1: ee9 will not return to the Whetstone Translator.
__
Final State:

At #03016/1 (1550/1); ICR = 74907395; the instruction was #200:220:000, i.e. OUT
CIA: #03016/1 (1550/1)
NIA: #03016/4 (1550/4)
ORDERS: 74907395 executed (ICR)
CPU TIME: 420605422 KDF9 us. (RAN)
CLOCK TIME: 443794712 KDF9 us. (EL)

The SJNS is empty.

Q store:
 Q1: Q #064773/ #000002/ #001125 = Q 27131/ 2/ 597
 Q2: Q #000040/ #000015/ #001124 = Q 32/ 13/ 596
 Q3: Q #000001/ #001124/ #011443 = Q 1/ 596/ 4899
 Q4: Q #000040/ #000001/ #001133 = Q 32/ 1/ 603
 Q6: Q #000000/ #007217/ #007223 = Q 0/ 3727/ 3731
 Q7: Q #000000/ #000000/ #000024 = Q 0/ 0/ 20
 Q8: Q #000030/ #177777/ #007203 = Q 24/ -1/ 3715
 Q9: Q #000171/ #077640/ #077600 = Q 121/ 32672/ 32640
Q10: Q #000000/ #000301/ #007203 = Q 0/ 193/ 3715
Q11: Q #000036/ #000000/ #000000 = Q 30/ 0/ 0
Q12: Q #000030/ #177777/ #077700 = Q 24/ -1/ 32704
Q13: Q #000037/ #077700/ #077705 = Q 31/ 32704/ 32709
Q14: Q #000000/ #000001/ #007202 = Q 0/ 1/ 3714
Q15: Q #000003/ #000002/ #007203 = Q 3/ 2/ 3715

The NEST is empty.
__
End of Run.
FW0 on buffer #00 typed 121 bytes.
TR1 on buffer #02 read 5416 bytes.
TP0 on buffer #04 punched 552 bytes.
LP0 on buffer #05 printed 13 lines.
__

real 0m1.743s
user 0m1.723s
sys 0m0.005s

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

15
TP0:
===

LINE 18 REL LINE 8 POSITION IDENTIFIER lab
END COMMENT
LINE 24 REL LINE 5 POSITION IDENTIFIER p0
END COMMENT
LINE 32 REL LINE 7 POSITION IDENTIFIER p3
END COMMENT
LINE 46 REL LINE 13 POSITION IDENTIFIER pout
END COMMENT
IDENTIFIER a NOT USED
DECLARED ON LINE 2
IDENTIFIER b NOT USED
DECLARED ON LINE 2
IDENTIFIER c NOT USED
DECLARED ON LINE 2
RAN/EL/000M05S/000M15S SIZE 603
===

LP0:
===

N= 0 J= 0 K= 0 X1=+1.00000000 X2=-1.00000000 X3=-1.00000000 X4=-1.00000000
N= 120 J= 140 K= 120 X1=-0.06834220 X2=-0.46263766 X3=-0.72971839 X4=-1.12397907
N= 140 J= 120 K= 120 X1=-0.05533645 X2=-0.44743656 X3=-0.71097339 X4=-1.10309806
N=3450 J= 1 K= 1 X1=+1.00000000 X2=-1.00000000 X3=-1.00000000 X4=-1.00000000
N=2100 J= 1 K= 2 X1=+6.00000000 X2=+6.00000000 X3=-0.71097339 X4=-1.10309806
N= 320 J= 1 K= 2 X1=+0.49040732 X2=+0.49040732 X3=+0.49039250 X4=+0.49039250
N=8990 J= 1 K= 2 X1=+1.00000000 X2=+1.00000000 X3=+0.99993750 X4=+0.99993750
N=6160 J= 1 K= 2 X1=+3.00000000 X2=+2.00000000 X3=+3.00000000 X4=-1.10309806
N= 0 J= 2 K= 3 X1=+1.00000000 X2=-1.00000000 X3=-1.00000000 X4=-1.00000000
N= 930 J= 2 K= 3 X1=+0.83466552 X2=+0.83466552 X3=+0.83466552 X4=+0.83466552

RAN/EL/006M56S/006M57S^L
===

tsd [{mode | - } [miscellany]]

tsd runs the Time Sharing Director (the original KDF9 operating system from English Electric) in the specified manner.
The mode and miscellany parameters are as described for nine. This is how it boots, with the supplied FW0 file:

Welcome to ee9 V2.0q, the GNU Ada KDF9 emulator.
Performing a cold boot in fast mode (without diagnostics).
__

P
KKT40E007UPU
TIME SHARING DIRECTOR 2464 WDS|
02U01
02U02
05U03
01U04
03U05
10U07
10U10
10U11
10U12
10U13
10U14
CORE MODULES;8.|

OUT 8 REEL NO;9.|

A-PROGRAM DETAILS|
LEVELS;N.|

DATE D/M/Y;4/5/67.|

TIME ON 24-HOUR CLOCK
HOURS/MINS;1/2.|^C
ee9: Breakpoint: (f:ast | t:race | p:ause or q:uit)?

TINT;G0.|

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

16
10L14 /Iden<_J_U_N_K>,TSN -00-2339
10L13 /Iden<_J_U_N_K>,TSN 77777777
10L12 /Iden<EFPBEAAG>,TSN -00-0552
10L11 /Iden<WHETLIST>,TSN -00-1498
10L10 /Iden<_Z_E_R_O>,TSN -00-1478
10L07 /Iden<PRINTEND>,TSN 0-00-929
02U01
02U02
05U03
01U04
03U05
10L07 PRINTEND
10L10 _Z_E_R_O
10L11 WHETLIST
10L12 EFPBEAAG
10L13 _J_U_N_K
10L14 _J_U_N_K^C
ee9: Breakpoint: (f:ast | t:race | p:ause or q:uit)? q
Run stopped by user!
__
Final State:

At #00074/2 (60/2); ICR = 13666251474; the instruction was #042, i.e. DUP
CIA: #00074/2 (60/2)
NIA: #00074/3 (60/3)
ORDERS: 13666251474 executed (ICR)
CPU TIME: 70696387070 KDF9 us. (RAN)
CLOCK TIME: 70748738953 KDF9 us. (EL)

The CPU is in DIRECTOR_STATE
CONTEXT: 0
PRIORITY: 0
BA: #000000
NOL: #077777
CPDAR: AAAAAAAAAAAAAAAA
RFIR (Interrupt Flags):
PR: FALSE
FLEX: FALSE
LIV: FALSE
NOUV: FALSE
EDT: FALSE
OUT: FALSE
LOV: FALSE
RESET: FALSE

The SJNS is empty.

Q store:
 Q5: Q #000003/ #177073/ #136511 = Q 3/ -453/ -17079

V is set. T is clear.
NEST:
 N1:
#4040400000000000 = -138504105361408 = -4.40810381558E-38
 = Q #101010/ #000000/ #000000 = Q -32248/ 0/ 0
 = #202 #010 #000 #000 #000 #000 = "ØØØ "
 N2:
#0000000000000000 = 0 = 0.00000000000E+0
 = Q #000000/ #000000/ #000000 = Q 0/ 0/ 0
 = #000 #000 #000 #000 #000 #000 = " "
__
End of Run.
FW0 on buffer #00 typed 595 bytes.
MT0 on buffer #07 is at BOT, after 2 inter-block gaps and 48 bytes.
MT1 on buffer #10 is at BOT, after 2 inter-block gaps and 48 bytes.
MT2 on buffer #11 is at BOT, after 2 inter-block gaps and 48 bytes.
MT3 on buffer #12 is at BOT, after 2 inter-block gaps and 48 bytes.
MT4 on buffer #13 is at BOT, after 2 inter-block gaps and 48 bytes.
MT5 on buffer #14 is at BOT, after 2 inter-block gaps and 48 bytes.

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

17

APPENDIX 2: KDF9 CHARACTERS AND THEIR LATIN-1 TRANSCRIPTIONS

Line printer SP LF FF HT % '
Card Reader SP ISO:" LF FF HT ISO:# % '
Normal Case SP ISO:" LF FF HT ISO:# CS ISO:ß CN ISO:ñ
Shift Case SP ISO:" LF FF HT ISO:# CS ISO:ß CN ISO:ñ
Octal code 00 01 02 03 04 05 06 07

Line printer : = () £ * , /
Card Reader : = () £ * , /
Normal Case ISO:& ISO:? ISO:! ISO:% ISO:' ISO:$ ISO:~ /
Shift Case ISO:& ISO:? ISO:! ISO:% ISO:' ISO:$ ISO:~ :
Octal code 10 11 12 13 14 15 16 17

Line printer 0 1 2 3 4 5 6 7
Card Reader 0 1 2 3 4 5 6 7
Normal Case 0 1 2 3 4 5 6 7
Shift Case ↑ ISO:^ [] < > = × ÷
Octal code 20 21 22 23 24 25 26 27

Line printer 8 9 10 ISO:º ; + - .
Card Reader 8 9 _ ISO: _ 10 ISO:º ; + - .
Normal Case 8 9 _ ISO: _ 10 ISO:º ; + - .
Shift Case () _ ISO: _ £ ; ≠ ISO:± * ,
Octal code 30 31 32 33 34 35 36 37

Line printer A B C D E F G
Card Reader ISO:@ A B C D E F G
Normal Case ISO:@ A B C D E F G
Shift Case ISO:@ a b c d e f g
Octal code 40 41 42 43 44 45 46 47

Line printer H I J K L M N O
Card Reader H I J K L M N O
Normal Case H I J K L M N O
Shift Case h i j k l m n o
Octal code 50 51 52 53 54 55 56 57

Line printer P Q R S T U V W
Card Reader P Q R S T U V W
Normal Case P Q R S T U V W
Shift Case p q r s t u v w
Octal code 60 61 62 63 64 65 66 67

Line printer X Y Z
Card Reader X Y Z ISO:{ ISO:} → ISO:| ISO:\ see note
Normal Case X Y Z ISO:{ ISO:} → ISO:| ISO:\ see note
Shift Case x y z ISO:{ ISO:} → ISO:| ISO:\ see note
Octal code 70 71 72 73 74 75 76 77

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

18

NOTES
The transcription provides a Latin-1 representation for every KDF9 internal character code.

• SP is a blank space; LF is Line Feed; FF is Form Feed; HT is Horizontal Tab; CS is Case Shift; CN is Case Normal.

• ‘y ISO:x’ indicates that x is the ISO Latin-1 transcription of the non-Latin-1 KDF9 character y.

• ‘ISO:x’ indicates that x is the ISO Latin-1 external representation of a non-legible KDF9 character.

• Fast devices (e.g. magnetic tapes) always use the Normal Case representation.

• Code 778 is represented by Ø; on two-shift devices (such as the Flexowriter) for ‘character mode’ transfers only, and on
punched card devices and fast devices invariably.

• If a cell is empty, that code is completely suppressed by the line printer.

• Except for ‘character mode’ output, ß and ñ are acted upon by the Flexowriter and paper tape punch, not transferred
literally, so that output is presented in the correct case.

APPENDIX 3: KDF9 GRAPH PLOTTER CODES

Plotting
action

none step
paper
back

step
paper

forward

step
pen
right

step
pen
left

step
pen

right,
paper
back

step
pen
left,

paper
forward

lower
pen

raise
pen

Normal
Case

SP ISO:" LF HT ISO:& ISO:? ISO:! 0 ISO:@

Octal
code

00 01 02 04 10 11 12 20 40

All other 6-bit character codes represent invalid plotter commands.

For ee9 V2.0r, © 2015 William Findlay

This document is ���licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

19

APPENDIX 4: DISASSEMBLED MACHINE CODE
The U format core printing routine traces the program’s control flow, and uses simple heuristics, to determine whether a
given word represents data or instructions. These do a good job, but cannot always be correct. Words thought to be data
are output in a variety of formats. Instructions are shown with octal or decimal operand addresses, at option. An
instruction that is the target of a jump starts a new line labelled by its address. An address is also given for the instruction
sequentially following a subroutine jump (JS…), as that is the link value stored in the SJNS, and may be useful for
following the course of execution.

Here is an example for which the heuristics work well. Lines of the form Vn=value; are local static data declarations;
and the executable code begins with ‘V14; =V13;’:

P51V15;
 V0=F0.019042127887;
 V1=F0.019042129240;
 V2=F0.038082414120;
 V3=F0.076666493927;
 V4=F0.121226383896;
 V5=F0.725940450930;
 V11=Q6/1/0;
 V12=Q4/1/0;
 V14=F1.0;
 V15=F0.5;

 V14; =V13;
 DUP; DUP; ×F; V14; +F; JSP40; =V6;
 V12; =Q13;

2; V13; V6M13; +F; V15; ×F; =V13;
 V13; V6M13Q; ×F; JSP40; =V6M13; J2C13NZ;
 V11; =Q13;
 V0M13Q; ZERO; REV; FIX; FLOATD;

1; V0M13; V5M13Q; ×+F; J1C13NZ;
 ROUNDF; ÷F; EXIT1;

And here is its DU-format output:

Core store interpreted as instructions.

1393/0: #1742337743622052 = 68337217250346 = 1.90421278869E-2
 = #076 #046 #377 #217 #044 #052 = "/BºØCR0J"
 = Q 15910/ #177617/ #22052 = Q 15910/ -113/ 9258

1394/0: #1742337743651250 = 68337217262248 = 1.90421292400E-2
 = #076 #046 #377 #217 #122 #250 = "/BºØCU(H"
 = Q 15910/ #177617/ #51250 = Q 15910/ -113/ 21160

1395/0: #1744677611614626 = 68504697379222 = 3.80824141200E-2
 = #076 #115 #376 #047 #031 #226 = "/DWØ=QF6"
 = Q 15949/ #177047/ #14626 = Q 15949/ -473/ 6550
...
1409/0:
 E1407; =E1406;
 DUP; DUP; ×F; E1407; +F;
 JSE1263/0;
1411/4:
 =E1399;
 E1405; =Q13;
1413/0:
 E1406; E1399M13; +F; E1408; ×F; =E1406;
 E1406; E1399M13Q; ×F;
 JSE1263/0;
1417/0:
 =E1399M13;
 JE1413/0C13NZ;
 E1404; =Q13; E1393M13Q; ZERO; REV; FIX; FLOATD;
1420/0:
 E1393M13; E1398M13Q; ×+F;
 JE1420/0C13NZ;
 ROUNDF; DIVF;
 EXIT 1;

