

© 2015 William Findlay, kdf9@findlayw.plus.com

This document is �licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

1

HOWTO: HAVE FUN WITH ee9, VERSION 2.1
CONTENTS
ADMONITION
USING USERCODE
WALKING WITH WALGOL (THE WHETSTONE ALGOL 60 SYSTEM)
DIRECTING DIRECTOR (THE EE TIME SHARING OS)
BUILDING YOUR OWN VERSION OF ee9
ADMONITION
First of all, make sure you have read, understood and inwardly digested the contents of the README file for this release
of ee9. Secondly, do the same for ‘Users Guide for ee9.pdf’. I know, I know! Reading documentation is no
fun! But it is good for you. You’ll get no pudding until you’ve eaten your greens!

If that has not put you off the notion entirely, here is some guidance as to how best to use ee9 with Usercode
programs, Whetstone Algol programs and the EE Time Sharing Director. To be honest, and despite the foregoing, you
can get a much quicker start by reading ‘Getting started’ and ‘Simple Examples’ in the README file.
USING USERCODE
The EE KDF9 Usercode manual is the indispensable guide to KDF9 assembly-level programming. It is available in
DjVu format at:

http://www.findlayw.plus.com/KDF9/Documents/Usercode%20Manual.djvu

In the olden days, Usercode programs were compiled to machine code using KDF9’s native assembler. Unfortunately
neither a binary nor a source text has survived (so far as I know—if you know differently, please get in touch). Instead,
we have David Holdsworth’s brand-new Usercode assembler kal3. It runs on your own computer, generating a KDF9
machine code file that ee9 can load and run.

A small selection of programs can be found in the directory Testing/Assembly.
I provide some shell commands, in the Testing directory, to make it a little easier to compile and run Usercode.

These take Usercode programs from text files named with the ‘.k3’ suffix, make listings in files named with the
‘.txt’ suffix, and generate KDF9 machine code programs in files named with the ‘.kdf9’ suffix. The suffix is
optional in a name given as a parameter to the ucc, nine and lud commands: if supplied, it must be correct; if
omitted, it is automatically restored.

• The ucc (‘Usercode compile’) command runs kal3, saves a compilation listing, and names the KDF9
machine code file after the input file; e.g.:

 ./ucc my_prog

compiles the program in the file Testing/Assembly/my_prog.k3, leaving a listing in
Testing/Assembly/my_prog-listing.txt, and a binary in Testing/Binary/my_prog.kdf9,
conveniently placed for the nine command.

• The nine command runs a KDF9 machine code program in Testing/Binary; e.g.:
 ./nine my_prog my_data t

runs the binary Testing/Binary/my_prog.kdf9 in trace mode (or f, p, s, or nothing at all), having
attached TR0 to the data file Testing/Assembly/my_data.txt.
The tracing verbosity can specified by a fourth parameter, composed of the same characters as the V option in a
settings file. For example:

 ./nine my_prog my_data t hps

runs my_prog in trace mode, the tracing verbosity being reduced by omitting the histogram, peripheral I/O
trace, and signature. If either the TP0 or the LP0 file is found to be non-empty at the end of a run, it is displayed
on the terminal. The data file and the diagnostic mode are both optional. To give a mode, but not an input file,
specify the file parameter as a minus sign; e.g.:
 ./nine my_prog – f

• The nine_test command runs a KDF9 machine code program in test program mode, but in every other
way it has the same specification as the nine command.

© 2015 William Findlay, kdf9@findlayw.plus.com

This document is �licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

2

YOU PROBABLY DON’T NEED TO KNOW THIS:
• The lud (‘link Usercode data’) command is used by nine to copy a data file into TR0. You can invoke it
directly to supply a data file in TR0 for a run of ee9 that you call yourself. For example, the following is
somewhat like the first ./nine command, above:

 ./lud my_data
 ./ee9 -sp -dt <Binary/my_prog > TP0

WALKING WITH WALGOL (THE WHETSTONE ALGOL 60 SYSTEM)
With the best will in the world it is impossible to describe the execution of an Algol program, using Walgol, as a ‘run’;
even ‘walking’ suggests a celerity that was foreign to its nature. Perhaps ‘crawl’ conveys the best impression, but ee9
runs code so much faster than the KDF9 hardware that you are unlikely to get bored!

The EE KDF9 Algol manual is available in PDF and DjVu formats at:
 http://www.findlayw.plus.com/KDF9/Documents/EE%20KDF9%20Algol%20Manual.pdf
 and
 http://www.findlayw.plus.com/KDF9/Documents/EE%20KDF9%20Algol%20Manual.djvu
A selection of Algol programs can be found in the directory Testing/Algol.
I provide some shell commands, in the Testing directory, to make it a little easier to compile and run using

Walgol. These commands take Algol 60 programs from text files named with the ‘.a60’ suffix. The suffix is optional
in a name given as parameter to the whet and lap commands: if supplied, it must be correct; if omitted, it is
automatically restored.

YOU DO NEED TO KNOW THE FOLLOWING:
You are likely to encounter Walgol compilation and execution errors. They have identifying numbers, tabulated
separately for Translator and Controller, in the file ‘Documents/Walgol Error Numbers.pdf’.

A compilation listing is produced only if the response to the compiler’s ‘OUT;’ prompt is an OUT 8 stream number
(reply ‘10.|’ or ‘30.|’), rather than ‘N.|’. Stream 10 is directed to TP0; stream 30 goes to LP0. You may find that
the listing disappoints: the source code is not included; instead the compiler outputs a table relating source line numbers
to object code syllable addresses.

When the Algol object program starts, it prompts ‘STREAM;’ for the number of the OUT 8 spooled output stream to
be used; again, reply ‘10.|’ or ‘30.|’. This should be the same as the stream number specified in the source program.

• The whet command compiles and executes a Whetstone Algol program; e.g.:
 ./whet my_prog

compiles and executes Testing/Algol/my_prog.a60, with the compiler in fast mode; alternative modes
are as given, above, for the nine command. If you want to specify a mode for the execution of the object
program by the Whetstone Controller, different from that used by the Whetstone Translator, then you need to set
up an options file, settings_2.txt.
The tracing verbosity can specified by a fourth parameter, as for the nine command. For example:

 ./whet my_prog t hps

runs my_prog in trace mode, the tracing verbosity being reduced by omitting the histogram, peripheral I/O
trace and signature.

A Walgol source program and its (stream 20) data are both read from TR0, so it is convenient to include the program
and its data in the same text file (my_prog.a60, in the given example). Alternatively, only the program need be held
in that file, with its data in files TR0a, TR0b, etc., using the facility for attaching TR0 at run-time to a succession of
files.

The whet command sets up the FW0 file for the Whetstone system so that you do not need to type in any
responses to Flexowriter prompts. If the given replies are unsuitable, change the data in
Testing/FW0_for_Whetstone.
If either the TP0 or the LP0 file is found to be non-empty at the end of a run, it is displayed on the terminal.

BUT YOU PROBABLY DON’T NEED TO KNOW THIS:

• The lap (‘link Algol program’) command is used by whet to copy a data file into TR0. You can invoke it
directly to supply a data file in TR0 for a run of ee9 that you call yourself. For example, the following is
somewhat like the latter example of the ./whet command:

 ./lap my_prog
 ./dow t hps

AND YOU PROBABLY DON’T NEED TO KNOW THIS EITHER:
• The dow (‘do Whetstone’) command conveniently abbreviates a call on ee9 to execute the Whetstone system. For
example, the following is somewhat like the latter example of the ./dow command:

 ./ee9 -sp -dt -mhps <Binary/KMW0201--UPU >TP0

© 2015 William Findlay, kdf9@findlayw.plus.com

This document is �licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

3

DIRECTING DIRECTOR (THE EE TIME SHARING OS)
EE implementation documentation describing the structure and functioning of Director is available at:

 http://sw.ccs.bcs.org/KDF9/directorManuals/manuals.htm

• I provide a shell command, tsd, in the Testing directory, to make it a little easier to run the EE Time Sharing
Director. The tsd command takes only the optional diagnostic mode flags, e.g.:
 ./tsd t hrs
runs the Time Sharing Director in trace mode, without histogram, retrotrace or signature.

The tsd command sets up the FW0 file for Director, so that you do not need to type in any responses to prompts
during its initialization phase. If the given replies are unsuitable, change the data in Testing/FW0_for_Director.
Before attempting to run Director, if you have not already run the self-test procedure, be sure to run the command:

./nine RLT Assembly/RLT_data.txt
to make sure all the magnetic tape decks have properly labelled tapes to mount.

YOU PROBABLY DON’T NEED TO KNOW THIS:

• The tsd command conveniently abbreviates a call on ee9 to execute the Time Sharing Director. For example,
the following is somewhat like the latter example of the ./tsd command:
 ./ee9 -tb -dt -hrs <Binary/KKT40E007UPU >TP0

© 2015 William Findlay, kdf9@findlayw.plus.com

This document is �licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

4

BUILDING YOUR OWN VERSION OF ee9
The Build directory contains a command file called mk9, which is used to build ee9 binaries. mk9 takes optional
parameters that determine the build flags to be used for the compilation. These flags can easily be amended if you find
that they are unsuitable for your development environment: see the mk9 file itself.

The first parameter of mk9 should be one of the following:
ee9: make an optimised binary, with no optional compilation warnings,
 but with a high level of runtime checking enabled (default)

max: make an optimised binary, with no optional compilation warnings, and with no runtime checking
 (it runs ~6% faster than using ee9)

warn: make an unoptimised binary, with many optional compilation warnings

unop: make an unoptimised binary, with no optional compilation warnings

verbose: make an optimised binary, with (too) many optional compilation warnings

kal3: compile the sources in Build/kal3/ and leave the kal3 object program in Testing/kal3

all: call mk9 successively with the clean, kal3, and ee9 parameters

clean: remove all workfiles created by a compilation

tidy: establish a standard execution environment in the Testing directory

zip: create a compressed zip archive of emulation, named <distribution>.zip

distro: calls mk9 successively with the all, clean, tidy and zip parameters;
 the binaries included in the distribution were created using the distro parameter.

Note that optimised builds of ee9 run about 4 times faster than unoptimised builds!

The second, distribution, parameter is given only if a build type is the first parameter, and is one of the following:

UNIX, Unix, unix, LINUX, Linux, linux, Mac, OSX*, Intel_OSX, PPC, RPi, Raspbian, or raspbian
(where * is any string):

Build a binary for OS X, Linux, or other Intel UNIX system that supports ANSI-terminal escape sequences
and has /dev/tty as the interactive terminal. This is the default, so, e.g.:

 ./mk9 ee9
has the same effect as:

 ./mk9 ee9 OSX_Yosemite
and as:
 ./mk9 ee9 Linux

PPC:

Build a binary for a PowerPC G5 Macintosh under OS X 10.5 (PowerPC Leopard) or later, e.g.:
 ./mk9 ee9 PPC

Raspberry_Pi, RPi, Raspbian, or raspbian:

Build a binary for the Raspbian operating system on the Raspberry Pi, e.g.:

 ./mk9 ee9 RPi

WINDOWS, Windows, or windows:

Build a binary for Microsoft Windows, e.g.:

 ./mk9 ee9 Windows

The compilation listing is left in a file named Build/komlog.ada; it should be free of any compilation warning
messages. It starts with a header that identifies the ee9 version, mk9 build type, and compilation options used.

If you have difficulty in compiling ee9 warning-free, please let me know, as it may indicate a portability defect.

© 2015 William Findlay, kdf9@findlayw.plus.com

This document is �licensed under a Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

5

P.S. For MacOS X 10.5 (PowerPC Leopard) users only.
The Ada compiler presently available for this system is rather old, and generates a spurious error when an optimising
compilation is attempted. For that reason, the distribution was created with the special mk9 second parameter PPC,
which implements the all option with the unop parameter, in place of the ee9 parameter. The un-optimized binary
of ee9 that results is slower as a consequence, but it is still much faster than the KDF9 hardware.

P.S. For Raspberry Pi users only.
The Ada compiler distributed for use with Raspbian fails by running out of stack space when an optimising compilation
of the ioc-magtape.adb file is attempted. For that reason, mk9 separately compiles ioc-magtape.adb at
optimisation level –O0 (for the Raspberry Pi only). The un-optimized binary that results is then linked in with an
optimised compilation of all of the rest of the code. Since the speed of ioc-magtape.adb is not important to the
performance of ee9, this workaround has negligible overall effect.

