Page 1

Recoded by Evgeny Muchkin 10/06/1998
SysOp of PALLY STATION tel: 176-74-19
Last update and correxion by Cyrax, Inc. April 18, 2002
Former GS programmer ...;) email: reptyle@mail.ru

(¢) STINGER &
(¢) Cyrax, Inc. - (*)

Programming Guide
General Sound.

Version v1.04. Revision 006.

Page 2

(edited into CHRYV doc)

The entire author's text is left with the exception of
formatting and correction of errors in the text.
Added description of fixes in GS ROM v1.05.

24.02.2012

Table of contents

1.Brief technical characteristics Of GScocooviiiiiiiiiiiee e five

2.Brief description of GS, or @ lot 0f any Crapccceeviieeieiciieciieiects e five

3.Interface With the SPECLIUMcc.ooiiiiiiiiiiiieee e ettt seeseeenaeenes 6

4.GS COMMANA SYSEEIT ..c..viiiieiiieiieeiieeteestieeriteete stteeetesteeaseeesseeaseeaseenseeaseesnseaans saseesnseesnseenseesnsenns 6

4.1 GS COMMANAS: ...enviiiiiiiiiiieitete ettt ettt ettt ettt sb e e bt et e st e sbeenbe teeutesseenseebesstenaeens eight

41,1 # 00 RESEE FlAGS .oooeveeiiieeiieciiecieecte ettt certteette e et e et esseesbe e teeeseesebaes seesseessseessseennes eight
4.1.2 # 01 SEt SIENCE (F) cvviieeiiiiieiieeciiesee et ertees ceeveesteeseeebeesbeesteeasteessseessseassees seessseesseesseens eight
4.1.3 # 02 Set 10W VOIUIME (F) .eoiiiiiiiieciie ettt et eetee et e sreeste e e reeseveeteeebeestnes —aeenveenns eight
4.1.4 # 03 Set high VOIUME () ...eoiiiieii s et aeeeneeens eight
4.1.5 04 SEt'E" 3DIS (F) cveeiieiieieiieeie et etesiees ceteeteesteete et e steesteea e st e te e e e aestaes sebeeseeseenseenes eight
4.1.6 # 05 OUt VOIUIME POTE (F) 1eeiiriieiieiie ettt ceriteetee et esteeteesseeseaeeseessseesssees seesseennns eight
4.1.7# 06 SENd 10 DAC (F) conveiiiieieeie ettt veeteeete e ettt e saeebeessseestaeeseessbeentes reesbeesreens eight
4.1.8 # 07 Send to DAC and to vOIUME POTE (F) ..oveiiiiiiiiiiiieieecieeies et et e eight
4.1.9 # 08 - the same as command # 00ccceeiiiiiiiiiiiiiet et .nine
4.1.10 # 09 Sets one's byte VOIUME. (F) ..oocveeeiieiieeiieeieecie ettt ceevee e et e eeee e esaeeeseeenes nine
4111 # OA DAC OULPUL (F) cevieeiieiieecieeeiieeisestesteees ceteesveessseesseessaessseessseesseessseesseens sessseessseens nine
4.1.12 # 0B DAC and VoIume OULPUL (F) .eecveeeevieiireiiieiieeie e et ceeteesieeereeeveesseeeseesseesseeeseeees nine
4.1.13 # 0C Call SounDrive Covox MOAe () ...eceviiiiiiiiiiiciieeieecie s e eve e nine
4.1.14 # 0D Call UItravox mMode (*) c.vveeeeieeiiie et ciiees veeeriteesireeesiveeesraeesereeesereeesaveeas ten
4.1.15# OFE GO t0 LPT COVOX TNOAEeeieiiieiieeiiecie ettt cteeeiee et e seee e eteeseneeseeeseeeneeas ten
4.1.16 # OF Go in Profi CovoX MOAE (F) ..ccceeiiieeiiieiieciieriieiies eeriieeiee et e sveesee e enseesene e ten
4117 # 10 OUL 10 ANY POTE (F) 1ieriieiieeiieiieecteeeitesie et cetveesteeereesseesteeeseessseesssessseessseans 2esseensns eleven
4.1.18 # 11 In from any POIE (F) .eeecueieereieiieeie et erieees ceeeveeriee et e sreestreebeesbeesaseereeenrees seesseas eleven
O DA O] U A (o B U o) o (G T eleven
4.1.20 # 13 Jump t0 AdATESS (F) .eeeeieeiieie ettt ctteetteeieeste et e ee e e e s teesneeennaeens eeneens eleven
4.1.21 # 14 Load memory BIOCK (F) ...ccueiiiriiiiiiiiieiiiniieiees ettt e .eleven
4.1.22 # 15 Get MemMOTY DIOCK (F) oouviiiiiiiie ittt cs ettt esee et sveesreeereesaseees e eleven
4.1.23 # 16 POKE t0 @ddreSs (F) ..occveeerieeiiieieecieeeeieriee et cetveeteeereesteeeteeereeseveeaeessseessseens sesveens 12
4.1.24 # 17 Peek from address (¥) ...oeccveeiieiieecieecieecie e ettt ettt e re et e re e o 12

4.1.25 # 18 L0AA DE PAIE (%) vvovrvveoreeeeeeeeeeeeeeeeseseeees eosessessssssssesseessssssssssssssssesssssens semseesens 12

Page 3

4.1.26 # 19 Poke to (DE?)address () ety e e et e e e tb e e e rbaaenans s 12

4.1.27 # 1A Peek from (DE) address (¥) ...ooovieeieeiieiiieieeciiees ettt eie e esiee e seve s 12
4.1.28 # 1B Increment of DE Pair ()cccooiiiiioiiciicciicieeis ettt 13
4.1.29 # 1C Poke to (# 20XX) address () ..cveeeveeeiieirieeiecciieeiies reeeireesieeereesreesieeereeereesene e 13
4.1.30 # 1D Peek from (# 20XX) address () ..oooveeiieiiiiiee e ettt e 13
4131 H#1E -# 1F RESEIVEA ..oeeeviiieiiii et ettt ettt e 13

4132#F1 -# F2 RESEIVEA ..cnviiiiiiiiiiiieeceeeeis ettt 13

4.1.33 # F3 WM TESTATT ...eeiuiiiiiiiiieiieeiie ettt ettt ettt et et e s be e st e ebe eabeesaeeennes 13

O B 7 S O (4 I (1] 1 S RUPS 13
4135 # F5 BUSY O 1ttt ettt ette et e st e et e et e st e et e s et e ssteeseesns 2enteeneesseenneens 13
4130 # FO BUSY Off ..ot ettt ettt e eee s be e aeetee seesnseenseeasaenns 13
4.1.37 # F7 Get HX REZISLET () 1.nveieiieeiieie ettt teeite et e e eieeereesaeeaeesnseessseennes veens fourteen
4.1.38# F8 - # FO RESEIVEA ..cuviiiiiiiiiiiieeeeeeeees ettt fourteen

4.1.39 HFEA OUL ZETO 0 ZTO ..eouvieuiieiieiieieeieeeesteesteetees eetteteenteentesseenseeseeneesseenseesesnsesses seenee fourteen
4.1.40 #FB - #FF RESCIVEA ...eeeiiiiieiiiiiciieecee ettt ceeetree ettt eivee e revne e fourteen

4.1.41 #20 Get total RAMooiiiiiiice et ettt et eere e e et e eeabe e e tae e beeenareeas fourteen
4.1.42# 21 Get 1€ RAM ...ttt ettt beenbeninens fourteen
4.1.43 # 22 Get GS Variable (F) ..ecccveeeiieeie ettt eeriteeiee et sveeteeereesereesaaeereeenrees seennes fifteen
4.1.44 # 23 Get number Of RAM Pagesc.coouieiiiieiieiiciicieies et fifteen
4.1.45# 24 - # 29 RESEIVEA ...voieiiiiieceeceeee ettt ettt et e e fifteen

4.1.46 # 2A Set Module Master VOIUMEcc.cocueriiriiniiiiiienieis ettt fifteen
4.1.47 # 2B Set FX Master VOIUMEcc.coouiiiiiiiiiiiieiieiieis ettt fifteen
4.1.48 # 2E Set CUITENt FX ...coiiiiiieiieieeeeesteteeies ettt ettt ettt et eeae eeeneeenes sixteen
4.1.49 # 30 Load MOAUIEoocvviiiiiieiiiie ettt eets ctee ettt e eteeste e teeeteeseveeetne et 2erveessneens sixteen
4.1.50 # 31 Play MOAULE ...ccevieneiieiiecieee ettt ettt ee ettt e et e et eseae e teesntes aeeneesseens 17
4.1.51 # 32 StOP MOAUIE .c.eoiiiiieieeeeeeece et ettt et et e et e e e sbeessaees seeseesnseens 17
4.1.52 # 33 Continue MOAUIEc.eoouiriiiiiiiiiecieeieries ettt ettt en eeaeens 17
4.1.53 # 35 Set Module VOIUIMEooviriieiieiiciesieiceieeis ettt e 17
4.1.54 # 30 DAt 01N (F) evviiiiieiiiiie et erree et eeertreeereeesrre e stae e ertbeeestaeesbaeaens teesrbeeeserreeanes 17
4.1.55 # 37 ReinitialiSAtion (¥)cceeeciierieeiieeieeriieeiie s ceteeiteete et e et e seeeseeeeaeesnseennaeenne sseens 17
4.1.56 # 38 L0AA FX ..ottt ettt ettt sttt et e e e e e saeesbe e aesteeseenseenean 17

A 15T H B PIAY FX oottt ceetteste et e et e st e e st eereeesbeessaeenbees seesseeeseesseenes nineteen
4.1.58 # 3A Stop FX in Channelsc.coocviiiiiiiiiiiiiiciicie ettt et e o 20
4.1.59 # 3D Set FX VOIUIME ..cevviiiiiiiiciiie ettt vveesiveeeireeesereeesstaeesstseesnsraeessnaees svesensnes 20
4.1.60 # 3E Load FX (EXtended VEIrSION)c.ccceeuiiiiiiieiiiiieeiiee s veeeiveeeniveeesereesevreeeneveeeseveeas 20
4.1.61 # 40 Set FX Sample Playing NOTEccceviiriiriiiiiiiiiriiiies ettt 20
4.1.62 # 41 Set FX Sample VOIUIMEccooeeiiiiiiiiiciieiiecies ettt seee v v e 21
4.1.63 # 42 Set FX Sample FINCIUNEcccoeecviiiiiiieciiecieeiies ettt ene e 21
4.1.64 # 43 - # A4 RESCIVEA ..cuveeneieiieeieeee ettt ettt ettt eneas 21

4.1.65 # 45 Set FX Sample Prioritycocceeoieiiieie et ettt 21
4.1.66 # 46 Set FX Sample Seek First parametercocevervieriinienienies evieeienienieenieeiennns 21
4.1.67 # 47 Set FX Sample Seek Last parameterccceeecveeriiirieiceeniies ceeeieenieeneeeveeseveennes 21
4.1.68 # 48 Set FX Sample Loop Begin (¥)covieviieiiiiiiciieeiiees ettt e 22
4.1.69 # 49 Set FX Sample Loop End (¥) ..oceeveieiiiieieieiciees et 22

Q1TOHAA - H AF RESEIVE oot eee et eeea e 22

Page 4

4171 # 51 -# SF RESEIVEA vttt ettt et e s ve e e evne e 22
4.1.72 # 60 Get SONZ POSILIONccviiiiiiieiiiiiecieeeiieiie s ceveeteesteesteesteeesseessaeeseeesseessseenns ssseens 22
4.1.73 # 61 Get Pattern POSILIONcccvevieriiiiiiiiriieieeienies ettt e 22
4.1.74 # 62 Get MIXed POSTHION ...eouiiiieieiieiieie et ettt teete st nee e eseennes oens 23
4.1.75 # 63 Get Channel NOLEScoccuieiuiieiieiieeeieeie et eeeiee et te et et e e e sneeeeeeeaee eees 23
4.1.76 # 64 Get Channel VOIUMESc.ceeciieeiiiiiieieeieeiees ceeieeteeite st et e e e snaeeseeenneas 23
4.1.77 # 65 Jump t0 POSILION (F) c.uvieeiiieiieiiieiieeciieeieeiies eeeveesteeseesreesseeesseesseessseesseesses sveens 24
4.1.78 # 66 Set SPEed / tEMPO (F) .oeecreieiieiieeieecie ettt certeeereesre e e ebe e s e e e e e reesbeerae s sesrreas 24
4.1.79 # 67 Get SPEEd VAIUE (F) uviiviieiieeieee ettt ettt ettt e ete e e ree s beeanes 24
4.1.80 # 68 Get temPO VAIUE (F) wooeieiiieiie s ettt eaeen 24
4.1.81 # 69 Process SOUNA (F) ..oeecuieiiieieeieeieestteiie e ceiteeiie et e st e et e seeesnaeesaeesseesnneen seseeens 24
4.1.82# OA - # TF RESCIVEA ..ottt ettt 24
4.1.83 # 80 Direct Play FX Sample (# 80 .. # 83) c.veiiiiiieeiieeie et ettt 24
4.1.84 # 88 Direct Play FX Sample (# 88 .. # 8B) .veooiiiiieeieecieeciecies ettt 24
4.1.85 # 90 Direct Play FX Sample (# 90 .. # 93) .oooeeiieieeeereees et 25
4.1.86 # 98 Direct Play FX Sample (# 98 .. # 9B) .ooooiiieeeeeeee s ettt 25
4.1.87 # A0 Change Channel Note (# A0 .. # A3) (*) cooeererierieeiieet et 25
4.1.88 # A8 Change Channel Volume (# A8 .. # AB) (*) weeovvieiiiiieeiiecieeies reeee et 25
4.1.89# B0 - # FO RESEIVEA ...ooveiiieiieiieieeeeeie et ettt 25
4.1.90 #FA enable teSt MOAEcccuerueeriieiiiierieeeeees et 26

.2 NNOLES ..veteeitieeeitte ettt e ittt ettt e ettt e e ste +eeubteeeaueteaabtee e baeeeastte e ettt e eabeeeeans tesbeeesaneeeeaareeeans 27

4.3 Correspondence of Amiga and General Sound channel numberingccccoeevvevieniininiennns e 27

SUHUMAN LYTICS 1vviiiiieiiieciit ettt et e veeieeeteesteestee e beessseessseessaeasseessses beesseessseesssessseessenns 28

5.1 AULOPS GS: (2 PIECES;) covveeereiierieiieeieeiteestteeiteees cestveeteesseessseesseessseessseeseesseesssees sessseesens 28
5.1.1 Word Dangerous (X-TTade)cceereruerieriieieeieniens cveeienieenieeteseesseesseesesseesseensesnees 28
BT B 51 1<) (SR 28

5.2 Sanx 4 mMOTAl SUPPOTL:oeeiiiiiieiieeiie ettt ette et eeeieeeteeeteesseeesteeesseessseaseesnseenses sseessseessses 28

6.General SoUNd ROM V1,058ooiiiiiiieieceeie et eeeite ettt ettt et e et e e teessaeenees seesseeenseenns 29

T VEISION HISTOTY ..eviiiiiiiiieiie ettt eiee et ste e ceettteseteeteeeteessseesssessseessseessaeasaes seesssessseessseensseenseennns 31

Page 5

1. Brief technical characteristics of GS.
Processor: Z80, 12MHz, no wait cycles
ROM: 32k, 27256
RAM: Static Ram 128k total, 112k available for modules and samples in basic version

INT: 37.5 KHz Channels: 4 independent 8-bit channels, each with 6-bit
volume control.

2. A short description of GS, or a lot of crap.

GS - a music card designed for playing music modules and
individual samples (effects).

Modules for GS are standard Amiga and PC 4-channel MOD files, and
Samples - both Amiga signed sample and PC unsigned sample.

The MOD file player in GS is almost a complete analogue of ProTracker
on Amiga and was created with intensive use of ProTracker sources.
(The sources were from Protracker v2.1A by Lars "ZAP" Hamre - Amiga Freelancers)

MOD Player supports all Pro Tracker commands except for two:

* EO1 Filter On Amiga-specific command, turns on the high-pass filter.

* EFX Invert Loop I have not yet seen a player that would support this command.
Perhaps it is supported on some old players.

GS is, in fact, a microprocessor complex with its own processor,
ROM, RAM and ports, and is absolutely independent of the Spectrum main processor, which
allows, for example, load your favorite module, reset Spectrum, load
assembler and create to your favorite music. Soft inside GS completely takes over the tasks
playing sound, interpreting the module, etc. GS programming is reduced to
transfer byte by byte of the module and / or samples, and then only need to send commands
type: start the module, set the global volume for playing the module, start
sample # 09 in channel # 02, etc.

If you intend to load the module along with the samples, then GENERAL requires
load the module first, and then the samples.

When loading a module, it is highly recommended to leave 2k of memory free, i.e. upload
modules with a maximum length of 110K. This condition is not necessary, but its fulfillment
highly desirable for compatibility with future versions.

Similarly, it is highly recommended to leave 80 bytes for each sample, for example,
if you need to load a 63 kilobyte module and 18 samples, then we have:

Total Sample Length =112 * 1024-63 * 1024-2 * 1024-18 * 80 = 46688 bytes

This is the total length of the samples, which in this state of affairs can be
loaded.

If, for example, you need to calculate how much will fit in GS's memory
2 kilobyte samples, it is calculated as follows:

112 * 1024 / (2048 + 80) = 53 samples.
In GS'e there are 4 physical channels that play sound.

Channels 0 and 1 are left, and 2 and 3 are right.

3. Interface with the Spectrum.

GS looks at the world using 4 registers:

1. Command register - command register, writeable port at address 187 (#BB).
Commands are written to this register.

2. Status register - a status register, readable port at address 187 (#BB).
Register bits:
7— Data bit, data flag
6 - Not defined
5 - Not defined
4 - Not defined
3 - Not defined
2 - Not defined
1 - Not defined
0 - Command bit, command flag
This register allows you to determine the state of the GS, in particular whether it can be
or write the next data byte, or send the next command, etc.

3. Data register - data register available for writing port at address 179 (# B3). IN
this register Spectrum writes data, for example, it can be arguments
teams.

4. Output register - output register, readable port at address 179 (# B3). Of
this register the Spectrum reads the data coming from the GS.

The command bit in the status register is set by hardware after the command is written to
register of commands. It can be reset to 0 only from GS, which signals about
a certain stage of command execution.

The data bit in the status register can be set or cleared as desired.
Spectrum, and at the request of GS: when the Spectrum writes to the data register, it is hardware
is set to 1, and after reading by GS from this register it is reset to 0. When writing GS
in the output register, it (all the same Databit) is hardware set to 1, and after reading from
this port by the Spectrum is reset by hardware to 0.

Although the data register and the output register are located in space
port addresses at the same address and affect the same data bit,
they are two independent registers. A value once written to one of
these registers remains unchanged in it until a new record.

The state of the data bit is very often undefined, and if the command specification is not
the values of this bit are determined at certain stages of command execution, it is unacceptable
make any assumptions about the meaning of this bit.

4. System of commands GS.

First, I will allow myself a small digression from the actual command system. GS like
known to be mainly intended for playing modules and samples. In this version
(1.04) GS ROM allows loading one module and / or up to 32 samples.

Each sample, when loaded into memory, gets its own unique identifier,
which uniquely determines the reference to this sample in commands that require
sample number. The very first loaded sample gets a handle = 1, the next one -
number 2, etc.

The same applies to modules and this single loaded module will be

Page 7

have handle = 1 after loading.

A feature of this version is also that you first need to load the module, and
then samples.

Features of the command description:
The commands are described as follows:
1. Hex command code
2. Team name
3. Actions performed during command execution
4. Command format
5. Comments to the team

The command format is described as follows:

GSCOM EQU 187
GSDAT EQU 179

SC #NN: Send command code to command register
LD A, #NN
OUT (GSCOM), A

WC: Waiting for Reset Command bit
WCLP IN A, (GSCOM)
RRCA
JR C, WCLP

SD Data: Send data to data register
LD A, Data
OUT (GSDAT), A

WD: Waiting for Data bit to be reset, essentially waiting until GS accepts
data sent to him
WDLP IN A, (GSCOM)
RLCA
JR C, WDLP

GD Data: Receive data from data register
IN A, (GSDAT)

WN: Waiting for the Data bit to be set, in fact, waiting for the next data
from GS
WNLP IN A, (GSCOM)
RLCA
JRNC, WNLP
(*):
<PAUSE> - Just a little frame delay of two or three.

And finally - a small sequence against freezing (sometimes it helps)

XOR A

OUT (# B3), A
OUT (#BB), A
IN A, (# BB)

for fidelity, you can also duplicate;).

Page 8

4.1 GS Commands:

4.1.1 # 00 Reset flags

Clears the Data bit and Command bit flags.

SC# 00
WC
(Data bit = 0, Command bit = 0)

4.1.2 # 01 Set silence (*)

Outputs to DACs of all channels # 80. Essentially sets up silence.

SC#01
wC

4.1.3 # 02 Set low volume (*)

Sets the volume of the DACs of all channels to zero.

SC # 02
wC

4.1.4 # 03 Set high volume (¥)

Sets the volume of the DACs of all channels to maximum.

SC# 03
wC

4.1.5 # 04 Set 'E' 3bits (*)

Sets the GS 'E' register to the 3 least significant bits according to the specified value (2
the least significant bits are essentially the channel number # 00- # 03).

SD Chan (# 00- # 07)
SC#04

wC

4.1.6 # 05 Out volume port (*)

Sets the volume of the channel contained in 'E' to the specified value.
(The command works if 'E' is between # 00- # 03)

SD Volume (# 00- # 3F)

N 05

4.1.7 # 06 Send to DAC (*)
Outputs a byte to the DAC of the channel indicated by 'E'.
SD Byte
SC # 06
wC
4.1.8 # 07 Send to DAC and to volume port (*)
Outputs a byte to the DAC ('E') at the specified volume.
SD Byte
Page 9
SC#07
WwC
SD Volume
WD
4.1.9 # 08 - the same as command # 00
4.1.10 # 09 Sets one's byte volume. (*)
Setting the volume of the channel, the number of which is specified in the 2x most significant bits.
SD Byte (ccvvvvvy)
SC # 09
WwC

cc - Channel number

vvvvvy - Its volume

4.1.11 # 0A DAC output (¥)

Another direct output to the DAC.

SD Byte

SC # 0A

WwC

SD Chan (# 00- # 03)
WD

4.1.12 # 0B DAC and Volume output (*)

And finally, the last output to the DAC with volume setting.

SD Fbyte

SC # 0B

wC

SD Sbyte (ccvvvvvy)
WD

Sbyte bit assignment as in # 09

Teams # 01- # OB are mainly used to build various Covoxes and
players without going too deep into the internal structure of the GS.

vvvvvy - Its volume

4.1.13 # 0C Call SounDrive Covox mode (¥)

Calls the four-channel Kovoks mode, sequentially copies the data register
through the channels. Exit automatically after the fourth byte is output.
SD CH1
SC#0C
wC
SD CH2
WD
SD CH3
WD
SD CH4
WD

Page 10

4.1.14 # 0D Call Ultravox mode (*)

Calls the universal Kovoks mode, sequentially copies the data register by
channels, the number of which is adjustable (1-4). Unlike the previous option
synchronization is not performed. Logout is also done automatically by recording
last byte.

SD CHANS

SC#0D
wC

SD CH1
SD CH2
SD CH3
SD CH4

CHANS (4th least significant bit) indicates which channels will be used - to enable
the corresponding bit must be set. If the channel is off, then the received byte
goes to the next switched on channel (if it has time :)

4.1.15 # O0E Go to LPT Covox mode

Goes into single-channel Kovoks mode, directly copies the data register to the DACs
two (right and left) channels. Exit from this mode - writing # 00 to the command register.

SC # 0E
wC

SD\
SD\

... This is the output to the DACs
/
SD/

SC#00
wC

4.1.16 # OF Go in Profi Covox mode (*)

Goes into two-channel Kovoks mode, directly copies the data register to the DACs
one channel, and the command register in the DACs of the second channel. Exit from this mode - record # 4E
into the data register, then sequentially # OF and #AA into the command register.

SD # 59
SC # OF
WwC

SD\
SC\
SD\

SC This is the output to the DACs
!

SD/
SC/

SD # 4E
WD

SC # OF
wC
SC#AA
wC

Page 11

4.1.17 # 10 Out to any port (¥)

Outputs bytes to internal GS port (# 00- # 09).

SD Port
SC#10
wC
SD Data
WD

4.1.18 # 11 In from any port (¥)
Reads a byte from the internal GS port (# 00- # 09).

SD Port
SC#11
WC

GD Data
WN

4.1.19 #12 OUT to 0 port (¥)
Outputs a byte to the GS configuration port (# 00).

SD Data
SC#12
WC

4.1.20 # 13 Jump to Address (*)

Transfers control to the specified address.

SD ADR.L
SC#13
wC

SD ADR.H
WD

4.1.21 # 14 Load memory block (*)

Loading a block of codes at a specified address with a specified length.

SD LEN.L

SC# 14

<PAUSE> (MB WD)
SD LEN.H

WD

SD ADR.L

WD

SD ADR.H
<PAUSE>

SD\

WD\

SD\

WD Data block length LEN
!

SD/

WD/

4.1.22 # 15 Get memory block (*)

Unloading a block of codes at a specified address with a specified length.

SD LEN.L

Page 12

SC#15

<PAUSE> (MB WD)
SD LEN.H

WD

SD ADR.L

WD

SD ADR.H
<PAUSE>

GD\
WN\

GD\

WN Data block LEN length
!

GD/

WN/

GD

4.1.23 # 16 Poke to address (*)

Writes a single byte to the specified address.

SD Byte
SC# 16
wC

SD ADR.L
WD

SD ADR.H
WD

4.1.24 # 17 Peek from address (*)
Reads a single byte from the specified address.

SD ADR.L
SC#17
WD

SD ADR.H

Gd byte

4.1.25 # 18 Load DE Pair (%)
Loads the register pair DE (related to GS, not to be confused with the pair of the same name Main
CPU) with the specified word.

SD Byte.E
SC#18
wC

SD Byte.D
WD

4.1.26 # 19 Poke to (DE) address (*)
Writes a byte to the address specified in DE.

SD Byte
SC#19
WC

4.1.27 # 1A Peek from (DE) address (*)

Reads the contents of the DE address.
SC# 1A

Page 13

wC

o

4.1.28 # 1B Increment of DE Pair (*)

Increases the DE pair by one.

SC#1B
wC

4.1.29 # 1C Poke to (# 20XX) address (*)

Writes a byte to the address whose high byte is # 20. The command does not make any sense
has, since the ROM of the card is located at these addresses.

SD ADR.L
SC#1C
wC
SD Byte
WD
4.1.30 # 1D Peek from (# 20XX) address (*)
Reads a byte from the address, the high byte of which is # 20.
SD ADR.L
SC# 1D
wC
Gd byte
WN
4.1.31 # 1E - # 1F Reserved.
4.1.32 # F1 - # F2 Reserved.
4.1.33 # F3 Warm restart

Clears the entire GS, but skips the steps of determining the number of memory pages
and checking them, which greatly speeds up the initialization process.

SC#F3
wC

4.1.34 # F4 Cold restart

Complete restart of GS with all checks. Essentially JP # 0000.

SC #F4
wC

4.1.35 # FS Busy on

Sets busy flag to #FF

SC#FS5
WwC

4.1.36 # F6 Busy off

Sets busy flag to # 00
SC #Fo6

Page 14

WwC

Initially Busy = # 00. All commands in the GS are executed in the main loop
command interpreter. This loop can be conditionally represented as follows:

1 if Command bit = 0 then go to 1

2 Execute Command

3 if Command bit = 1 then go to 2

4 if Playing = 0 then go to |

5 if Busy = # FF then go to 1

6 Process Sound

7gotol

Using the Busy commands, you can, for example, initiate the playback of samples in all

channels, then let's say change the playback parameters in the channels, and then run this
all at the same time. If they are not used, then the following situation is possible:

the first one (the sample will start playing, and only then the second sample is initiated, etc.).

4.1.37 # F7 Get HX Register (*)

Get the contents of the HX (GS) register.
HX participates in the processing of the Busy flag (bit 7 0/1 - Busy On / OfY).

SC #F7
wC
GD HX
WN
4.1.38 # F8 - # F9 Reserved.
4.1.39 #FA Out zero_to_zero

Zero output to zero (configuration) GS port. Pauses the sound
music until the next reading from K.L. port.

SC #FA
wC

4.1.40 #FB - #FF Reserved.

4.1.41 # 20 Get total RAM

Get the total available memory on the GS. (In the basic version it is 112k)

SC #20

wC

GD RAM.L (Junior part)
WN

GD RAM.M (Middle)
WN

GD RAM.H (Major part)

Total RAM = 65536 * RAM.H + 256 * RAM.M + RAM.L

4.1.42 # 21 Get free RAM

Get the total free memory on the GS.

SC #20
wC
GD RAM.L (Junior part)

Page 15

WN

GD RAM.M (Middle)
WN

GD RAM.H (Major part)

Free RAM = 65536 * RAM.H + 256 * RAM.M + RAM.L

4.1.43 # 22 Get GS Variable (¥*)

Get the value of the GS variable whose number is specified by Num. Variables describe
the current state of the card, such as pattern number, tempo, etc. Accordingly numbers
variables are not given (due to the unsystematization and fragmentary data, and
also for other reasons).

SD Num
SC#22
wC

GD Variable
WN

4.1.44 # 23 Get number of RAM Pages

Get the number of pages per GS. (Basic version has 3 pages)

SC #23
wWC
GD Number RAM_Pages

4.1.45 # 24 - # 29 Reserved.

4.1.46 # 2A Set Module Master Volume

Set the volume of playing modules.

SD Module Master Volume [# 00 .. # 40]
SC#2A

wC

[GD Old_Master_Volume] - Old volume

A small example of using this command:
(Assumes module being played)

LD B, # 40

LOOP: LD A, B
OUT (GSDAT), A

LD A, #2A
OUT (GSCOM), A
El

HALT

DJNZ LOOP

LD A, #32
OUT (GSCOM), A

The above will smoothly reduce the volume of the playing module and then stop it.

4.1.47 # 2B Set FX Master Volume

Set the volume for playing the effects.
SD FX Master Volume [# 00 .. # 40]

Page 16

SC#2B
wWC
[GD Old_FX_ Volume] - Old volume

Similar to the previous command, but affects samples.

With these two commands, you can adjust the volume balance of the module and samples, and
etc.

4.1.48 # 2E Set Current FX

Set the current effect. It just assigns this value to the CURFX variable. If a
any command requires a sample handle, you can use this number instead
give it # 00 and the interpreter will substitute the value of the CURFX variable instead of zero.
(See commands # 38, # 39, # 40- # 4F for an understanding of the above.)

SD Cur_FX
SC#2E
wWC

4.1.49 # 30 Load Module

Loading the module into memory.

SC #30
wC
[GD Module Handle] - module number
(Command bit = 0, Data bit = 0)
SC # D1 (Open Stream - open stream)
wWC

SD\

WD\

... Module Bytes
SD/

WD/

SC # D2 (Close Stream-close stream)
WC

Example:

LD HL, Mod_adress
LD DE, 0-Mod_length
LD C, GSCOM

LD A, #30
CALL SENDCOM
LD A, #D1
CALL SENDCOM

LD A, (HL)
LOOP: IN B, (C)
JP P, READY
IN B, (C)
JP M, LOOP
READY: OUT (GSDAT), A
INC HL
LD A, (HL)
INCE
JP NZ, LOOP
INC D
JP NZ, LOOP

Page 17

WALIT: IN B, (C); Waiting for acceptance
JP M, WAIT; last byte
LD A, #D2
CALL SENDCOM
IN A, (GSDAT); Module number
OUT (GSDAT), A
LD A, #31

SENDCOM: OUT (GSCOM), A
WAITCOM: IN A, (GSCOM)
RRCA
JR C, WAITCOM
RET

4.1.50 # 31 Play module

Playing a module.

SD Module Handle - module number
SC#31
wC

4.1.51 # 32 Stop module

Stop playing the module.

SC#32
wC

4.1.52 # 33 Continue module

Continue playing the module after stopping.

SC#33
wC

4.1.53 # 35 Set Module Volume

Set the volume of playing modules.

SD Module Master Volume [# 00 .. # 40]
SC#35
wC

[GD Old_Master Volume] - Old volume

4.1.54 # 36 Data on (¥)

Sets the data register to # FF.

SC#36
wC
[GD Data (#FF)]

4.1.55 # 37 Reinitialisation (*)

Resets internal variables to their original state.

SC #37
wC

4.1.56 # 38 Load FX

Loading an effect sample into memory. Loads unsigned samples (PC type)

SC# 38

Page 18

wC
[GD FX Handle] -sample number
(Command bit = 0, Data bit = 0)
SC # D1 (Open Stream - open stream)
wC

SD\

WD\

... Sample Bytes
SD/

WD/

SC # D2 (Close Stream-close stream)
wC

When loading each sample, a header is created in GS memory for this sample, in which
describes the various parameters of the sample. After loading these parameters are set
to certain values, such as: Note = 60, Volume = # 40, FineTune = 0, SeekFirst = # OF,

Page 19

SeekLast = # OF, Priority = # 80, No Loop and CurFX internal variable is set
equal to FX Handle.

Then with commands # 40, # 41, # 42, # 45, # 46 and # 47 you can change these default values
on their own. This is required because command # 39 to initiate playback of the sample
uses the parameter values from the sample header.

In their natural form, samples are usually poorly packed with compressors, but
compressibility can usually be increased by converting the sample to Delta-view, i.e. keep not
the absolute values of the sample, and the relative offset from the previous byte.

This is how you can translate a sample into a Delta-view:

LD HL, Start_of sample
LD DE, 0-Length_of sample
LD C, #00

LOOP: LD A, (HL)
SUB C
LD C, (HL)
LD (HL), A
INCE
JP NZ, LOOP
INCD
JP NZ, LOOP

And here's how you can upload a sample:

LD IX, Parameters

LD HL, Sample_address
LD DE, 0-Sample_length
LD C, GSCOM

LD A, #38
CALL SENDCOM
LD A, #D1
CALL SENDCOM

LD A, (HL)
LOOP: IN B, (C)

JP P, READY

IN B, (C)

JP M, LOOP
READY: OUT (GSDAT), A

INC HL

ADD A, (HL)
INCE
JPNZ, LOOP
INCD
JPNZ, LOOP
WAIT: IN B, (C); Waiting for acceptance
JP M, WAIT; last byte
LD A, #D2
CALL SENDCOM

Page 20

; Now override the parameters
; samples by default
; values

LD A, (IX + # 00)

OUT (GSDAT), A; Note
LD A, #40

CALL SENDCOM

LD A, (IX+#01)

OUT (GSDAT), A; Volume
LD A, #41

SENDCOM: OUT (GSCOM), A
WAITCOM: IN A, (GSCOM)
RRCA
JR C, WAITCOM
RET

4.1.57 #39 Play FX

Playing the effect.

SD FX_Handle - sample number
SC#39
wC

When this command is executed, the following occurs: the channels specified in
SeekFirst parameter of our sample, and if at least one of them is free, in it and
the sample is played, otherwise the channels specified in SeekLast are watched and if
one of them is free, the sample is played in it, if there are no free ones, then all are viewed
channels specified by SeekLast, of which the channel with the lowest priority is selected and
is compared to the priority of our sample (meaning the sample we want
play) if this sample has a higher priority than a sample already playing in
channel, then the sample playing in the channel will be stopped, and our sample will be started in this
channel instead of the old sample. Here is such a priority scheme ...

Then the sample starts in the channel, then its note, volume, etc. parameters are written to
the channel data area from the sample header.

In general, to play the sample with the desired parameters, you can set
these parameters after loading the sample and feel free to use command # 39. If the parameters
should change, then you can proceed as follows: with command # 2E make the current
required sample, change its parameters with commands # 4x, and then start it
team # 39.

An alternative method of launching samples is provided by commands # 80 .. # 9F, when executed
these commands, you directly in the command code indicate in which channel you want to run the sample,
and besides this, you can also specify with what note and / or volume you want to start
sample.

4.1.58 # 3A Stop FX in channels

Setting the playback of effects in the specified channels, which are indicated in the mask
channels (Channel Mask). In it, a one in the nth bit indicates that the effect in the nth bit
the channel needs to be stopped

SD Channel Mask
SC#3A
wC

The above is the ideal way for this command to work, but unfortunately not all
so simple in this world, and this command does not act like that, namely: one in bit 7
stops the sample at channel zero, etc. In future versions this will be fixed, and
for now I can recommend stopping all samples with the # FF mask.

4.1.59 # 3D Set FX Volume

Set the volume for playing the effects.

SD FX Volume [# 00 .. # 40]
SC#3D
wWC

[GD Old_FX_ Volume] - Old volume

4.1.60 # 3E Load FX (Extended version)

Loading an effect sample into memory. Allows to load signed samples. (Amiga type)

SD # 01 (Signed sample)
SC#3E
wC
[GD FX Handle] -sample number
(Command bit = 0, Data bit = 0)
SC # D1 (Open Stream - open stream)
wC

SD\

WD\

... Sample Bytes
SD/

WD/

SC # D2 (Close Stream-close stream)
wC

4.1.61 # 40 Set FX Sample Playing Note

Sets the default note for the current effect.

SD Note [0..95]
SC #40
wC

Note =

0C-0

1C#0
12 C-1
24 C-2
36 C-3 (C-1 in Amiga)
48 C-4 (C-2 in Amiga)
60 C-5 (C-3 in Amiga)
72 C-6
84 C-7

Page 21

In this version Sound Generators Wave 2, 3 can reproduce octaves 3, 4 and 5, so
valid value for the Note parameter is 36 to 71.

4.1.62 # 41 Set FX Sample Volume

Sets the default volume for the current effect.

SD FX_Volume [# 00 .. # 40]
SC#41
wC

4.1.63 # 42 Set FX Sample Finetune

The default Finetune setting for the current effect.

SD FX_Finetune [# 00 .. # 40]
SC#42
WC

4.1.64 # 43 - # 44 Reserved.

4.1.65 # 4S5 Set FX Sample Priority

Sets the priority for the current effect. (See Command # 39)

SD FX_Priority [# 01 .. # fe]
SC #45
wWC

After uploading, each effect is set by default priority # 80. Effects,
playable in modules have priority # 40.

4.1.66 # 46 Set FX Sample Seek First parameter

Sets the Seek First parameter for the current effect. (See Command # 39)

SD FX_ SeekFirst
SC # 46
wWC

In the FX_ SeekFirst parameter, the 4 least significant bits are used, GS channel numbers
are arranged in ascending order.

bit 0 - channel 0
bit 1 - channel 1
bit 2 - channel 2
bit 3 - channel 3

For example, byte 00001010 will enable the first and third General Sound channels.

4.1.67 # 47 Set FX Sample Seek Last parameter

Sets the Seek Last parameter for the current effect. (See command # 39)

Page 22

SD FX_ SeekLast
SC #47

WwC
FX SeekLast format corresponds to FX SeekFirst format (See command # 46)

4.1.68

Sets the start of the loop for the current effect.

48 Set FX Sample Loop Begin (¥)

SD LEN.L
SC # 48
wC

SD LEN.M
WD

SD LEN.H
WD

If LEN.H - #FF is equal, no looping is performed

4.1.69 # 49 Set FX Sample Loop End (*)

Sets the end of the loop for the current effect.

SD LEN.L
SC #49
wC

SD LEN.M
WD

SD LEN.H
WD

4.1.70 # 4A - # 4F Reserved.

4.1.71 # 51 - # SF Reserved.

4.1.72

Getting the value of the Song_Position variable in the current module.

60 Get Song Position

SC # 60
wC
GD Song_Position [# 00 .. # FF]

Can be interpreted as the number of patterns played in the module. After the start
module takes on the value 0 and increases by one after playing the next
pattern. This variable can be used to synchronize processes in
Spectrum with playing the module. To do this, for example, at the beginning of the procedure
interrupt handling, make SC # 60, then perform various operations procedures with

screen, scrolling lines, etc. (]i.e. so that there is enough to execute the command
delay), and then read the value of port 179 (GD Song_Position), and compare it with

required and, in case of equality, go to the next part of the demos, i.e.

if (Song_Position == My_Position)
then goto Next Part Of Demo

4.1.73 # 61 Get Pattern Position

Getting the value of the Pattern_Position variable in the current module.

SC#61
wC
GD Pattern_Position [# 00 .. # 3F]

Get the offset value in the pattern (current ROW), use is similar
the previous command, however, it is required to note that this value changes quite

Page 23

fast, and therefore

if (Pattern_Position> = My Position) then goto Next Part Of Demo

4.1.74 # 62 Get Mixed Position

Get the Pattern_Position value mixed a little with Song_Position.

SC# 62
wC
GD Mixed_Position

Mixed_Position: (bit by bit)

7-Song_Position. 1

6-Song_Position.0

5-Pattern_Position.5
4-Pattern_Position.4
3-Pattern_Position.3
2-Pattern_Position.2
1-Pattern_Position.1
0-Pattern_Position.0

That is, if you get Mixed Position and do AND # 3F with it, you get a
Pattern_Position, and if after receiving it there are some RLCA, RLCA, AND # 02 - then it will be
the lower two bits of Song_Position. See the notes for commands # 60 and # 61.

4.1.75 # 63 Get Channel Notes

Get notes of all channels of the module.

SC# 63

wC

GD Note of channel 0
WN

GD Note_of channel 1

&zlq)\]Note_of_channelj
WN
GD Note of channel 3

If in any channel the note value has changed since the last command execution
63, then bit 7 of the received Note of channel N value will be zero, if this value then
the same as before, then this bit will be in one. The lower seven bits are
the actual note from 0 to 95. If this value is 127, it means that no samples
do not play in the channel. This command is mainly intended for building on its basis
various analyzers.

4.1.76 # 64 Get Channel Volumes

Get the volume of all channels of the module.

SC # 64

wC

GD Volume of channel 0
WN

GD Volume_of channel 1
WN

GD Volume_of channel 2
WN

GD Volume of channel 3

Page 24

See command # 63 description

4.1.77 # 65 Jump to position (*)

Makes a transition to a given position.

SD Position
SC#65
wC

4.1.78 # 66 Set speed / tempo (*)

Speed setting within # 01- # 1F. With values # 20- # FF, the tempo is set
playing. The tempo values correspond to the original ones at a speed of # 06.
SD Speed / Tempo

SC # 66
wC

4.1.79 # 67 Get speed value (*)

Reading the current speed.

SC# 67
wC

GD Speed
WD

4.1.80 # 68 Get tempo value (*)

Reading the current tempo.

SC # 68
WC

GD Tempo
WD

4.1.81 # 69 Process Sound (*)

Moving to the next quark (or tick) while playing a sound. Maybe in
in particular, used for synchronization with audio output. To do this, you need to install
busy flag (Busy On - which will cause the sound to stop), and then at the desired frequency
issue command # 69 for further playback.

SC # 69
wC

4.1.82 # 6A - # 7F are reserved.

4.1.83 # 80 Direct Play FX Sample (# 80 .. # 83)

Playing a sample in the specified channel.

SD Sample Number

SC # 80 .. # 83 (The least significant bits determine directly the channel number, in
which you want to play the sample)

WC

4.1.84 # 88 Direct Play FX Sample (# 88 .. # 8B)

Plays a sample in the specified channel with the specified note.

SD Sample Number

Page 25

SC # 88 .. # 8B (The least significant bits determine directly the channel number, in
which you want to play the sample)

wC
SD Note [0..95]
WD

4.1.85 # 90 Direct Play FX Sample (# 90 .. # 93)

Playing a sample in a specified channel with a specified volume.

SD Sample Number

SC #90 .. # 93 (The least significant bits determine directly the channel number, in
which you want to play the sample)

wC

SD Volume [# 00 .. # 40]

WD

4.1.86 # 98 Direct Play FX Sample (# 98 .. # 9B)

Plays a sample in a specified channel with a specified note and volume.

SD Sample Number

SC # 98 .. # 9B (The least significant bits determine directly the channel number, in
which you want to play the sample)

wWC

SD Note [0..95]

WD

SD Volume [# 00 .. # 40]

WD

4.1.87 # A0 Change Channel Note (# A0 .. # A3) (%)

Change the current note in the specified channel. Manufactured on the fly.

SD Note
SC#AO0..#A3
WC

4.1.88 # A8 Change Channel Volume (# A8 .. # AB) (*)

Like the previous command, it changes the channel volume on the fly.

SD Volume
SC# AS8..AB
WwC

The previous two commands work regardless of what is played in this
channel - sample or module. The appearance of a new sound in the channel - from a module or a sample
will return everything to its original state - that is, the volume or the note will be those specified
newly arrived sound. Due to this tempering ability to obtain the required
effect, these commands should be called with a certain frequency (set

experimentally).
4.1.89 # B0 - # FO Reserved
Page 26
4.1.90 #FA enable test mode

Special command for testing General Sound: 250 (#FA). First into register
commands, the #FA command is thrown, after which General Sound switches to the test command mode.
Further, in the same command register, we throw the following commands:

Command Act

Page 27

6
7-10
11-14
fifteen
sixteen
17
18-21

recording in volume 63 and then in sound alternately 0 and 255, until
no new command submitted

writes to the data register then 0, then 255 (to check the reading of data from
side of the spectrum)

writes 255 to sound, then 0 and 255 to volume

sets the maximum volume, beeps to channel 0 and 255, and the volume
reduces

in all channels sets the maximum volume and gives the saw to sound

fetches data from the data register and resets the arrival flag
commands

takes data and does not clear the command receipt flag

at maximum volume, writes to the sound then 0, then a byte from the register
data

4.2 Notes

Commands marked with (*) are undocumented and fully
only apply to version 1.04. The operability of these commands in subsequent versions
the author of the description (2) is not responsible.

2.1 remind you that the registers (their names) mentioned in this description refer only to
only to internal registers of GS and nothing to do with registers of the main processor
Dont Have.

3.This edition (006) is the most complete and accurate at the moment -
April 18, 2002. It is also the last and is more of a cognitive character (according to
at least the author sees no other use of this summary of commands, except for
high-level emulation GS).

To supplement this text, I was prompted by the fact that after about 4 years [saw my
work in the network, and even as part of those descriptions of the card. So I would like to see the dock
was as complete and accurate as possible ...

4.3 Correspondence of Amiga and General Sound channel numbering

Despite the fact that the channel layout in stereo in General Sound is similar
Amiga Protracker, channel numbering used in trackers does not match the numbering
channels in General Sound control commands.

Layout of channels in stereo in Amiga Protracker:

AM1 - left channel
AM2 - right channel
AM3 - right channel
AM4 - left channel

Channel layout in stereo in General Sound:

GSO0 - left channel
GS1 - left channel
GS2 - right channel
GS3 - Right Channel

Thus, the channels correspond to each other as follows:

GS0-> AM1
GS1-> AM4
GS2-> AM2
GS3-> AM3

This information is useful when setting SeekFirst / SeekLast parameters for alignment
playing modules and effects.

If we translate the channel numbering of the SeekFirst parameter from GS to Amiga numbering, then
the channel layout by SeekFirst / SeekLast bits will be as follows:

00001111

il
3241

For example, if in the Mod-tracker you can see that the module has free channels 1 and 3, then in
in most cases it would be wise to first try to play the sample in these channels,
and then in any others. To do this, the parameter should be set to% 00001001 in SeekFirst,
using GS-channels 0 and 3, which correspond to tracker channels 1 and 3.

Page 28

5. A few lyrics ...
5.1 Autops GS: (2 pieces;)

5.1.1 Slava Dangerous (X-Trade)

It has the idea of creating a GS'a, the hardware implementation of it, some wishes
relatively Soft'a GS'a, as well as the Amiga 1200, on which many have been produced
experiments. He is the only and irreplaceable producer of General Sound, and he is
The name of production and sales is GS.

5.1.2 Stinger

This is me, the author of this opus and by the joint soul and heart of General Sound. I am
the developer of all the built-in Soft'a in GS'e and I presume to continue to engage in sim
action. (Yes, I am also the author of some tricky habits in the hardware part
GS'a, and would have been the author of many others, if I had not been kept by Glory all the time,
constantly preoccupied with price reductions.)

Having written about 20 kb of the code for a half-year, I must say, I am a little tired, but I have enough
big plans for the following versions of the GS, for example:

* Wave 4 Sound Generators that reproduce all octaves;

* Acceleration at the expense of these percentages for 30-40 sound generation;

* [would very much like to play STM'ov from PC;

* Advanced system of teams;

* Various special effects over samples;

* Storing the patters in a pre-printed form (about 15% of the original

volume);
* And much more.
ALL SOFTWARE MUST WORK AND ON THE FOLLOWING VERSIONS OF

if it is written in accordance with my above wishes and
requirements. In addition to the described teams, there are an even larger number of teams in GS
which are not documented, and I leave it to myself to change them as I please
in the manner and only on the basis of the well-documented commands, I accept the legal requirements
type: "The document is written like this, but in the firmware it works in a different way ..."

I am planning a significant expansion of the command system, and will be glad to be constructive
(desirably specific) offers.

So if you are playing a game or writing a music editor for the GS and
find that you really do not have enough of any team, then call me and
ask for an offer. (Phone, I think it’s not a special job to find out;)

5.2 Sanx %%%rgg_%ﬂéyrt:

SParker (XLD)

Page 29

6. General Sound ROM v1.05a
(c) Stinger, 1997,
bugfixed by psb & Evgeny Muchkin, 2007.
This firmware version fixes 1.04 Beta glitches.
1. A glitch with modules in which> = 63 patterns (klisje.mod, tranceillusion.mod).

2. Glitch with the speed of playing the LAST note of the module, its
speed was set to standard, in many modules during looping it was
latency is noticeable (e.g. technostyle (z) .mod). Moreover, when looping not on the Ist
position, the speed was still set to standard!

3. Incorrect sample playback speed fixed. On some modules
it was noticeable that the samples were playing a little faster than necessary (for example,
EightMayDay.mod).

4. When the module started playing, GS reported that a note was being played, even if
nothing was playing on the channel (command # 64 returned not 127).

5. Added a command for players: # 6A - Set player mode. After this command GS
will stop paying attention to the stop command in the module (com. F00). Useful for
some modules (bst.mod).

Command format:
SD#01 ;#01 -On, #00 - Off
SC # 6A
WC

6. Built-in module reluper. Previously, if a sample was played in the module, the loop length
which was too small (tens-hundreds of bytes), GS slowed down or freezes.
After this command, the samples in the loaded module are fixed and GS does not slow down.

Command format:

SD MinLoopLen Low
SC# 6B

wC

SD MinLoopLen High

The MinLoopLen parameter is set in WORDS and can range from 0 to 16384

(0 - the reducer is off).

Possible short command format:

SC# 6B
WC
SC ...; next GS command

In this case, the default length is 512 words.
ATTENTION! The settings of commands # 6A and # 6B are only reset by hardware RESET or
command # F4 (command # F3 does not reset!).

PS The firmware at offset # 0004 contains the version number in BCD format; by
offset # 0100 contains the original copyrights (3 lines of 24 characters each); by
offset # 0080 contains patch information, line ends with 0.

PPS For old players to work in new modes (items 5 and 6), it is enough before starting them

Page 30

give commands from BASIC:

OUT 179.1
OUT 187.106
OUT 187.107

PPPS Special thanks to the following people:
* Stinger: for firmware and available sources,
* Aprisobal: without SJASMPIlus there would be none of this,
* Evgeny Muchkin: for any assistance in creating the patch,
* Caro: for IDA and moral support,
* SMT & Alone Coder: for UnrealSpeccy (and for fixing glitches in it !;),
+ Half EIf: for plugins to FAR,

* nlk-o & Manwe: for advice on mods.

Page 31

7. Version history
24.02.2012: thx Evgeny Muchkin

» added clause 4.1.90 #FA test mode activation.
01/18/2011: thx moroz1999

* added description 4.1.65 # 45 Set FX Sample Priority;
* added description 4.1.66 # 46 Set FX Sample Seek First parameter;
* added description 4.1.67 # 47 Set FX Sample Seek Last parameter;

+ added item 4.3 Correspondence of Amiga and General Sound channel numbering.

07/19/2009: basic version.

