
Content

1. Prologo two 1. Prologo two 1. Prologo two

2. What you need to mount the IDE 3 2. What you need to mount the IDE 3 2. What you need to mount the IDE 3

3. Installing the emulator ZEsarUX 6 3. Installing the emulator ZEsarUX 6 3. Installing the emulator ZEsarUX 6

Step 1 - Download the source code ZEsarUX 6

Step 2 - Installation and configuration of the MinGW 7

Step 3 - Compilation and configuration ZEsarUX 8

4. Installing and configuring the VS Code eleven 4. Installing and configuring the VS Code eleven 4. Installing and configuring the VS Code eleven

Step 1 - Installing basic plugins 12

Step 2 - Installing the plugin Z80 Debugger 14

Step 3 - Install node.js and assembler SJASMPLUS fifteen

6. Creating our integrated IDE to debug fifteen 6. Creating our integrated IDE to debug fifteen 6. Creating our integrated IDE to debug fifteen

6.1 - Open the folder with our sample program fifteen

6.2 - Files tasks.json and launch.json 16

6.2 - Assembly of the ASM code SJASMPLUS 19

6.3 - Launch of the debugging session twenty

6. Introduction to debug twenty 6. Introduction to debug twenty 6. Introduction to debug twenty

7. Now what? 2. 3 7. Now what? 2. 3 7. Now what? 2. 3

7. Acknowledgments 2. 3 7. Acknowledgments 2. 3

1. Prologo

I'm getting old.

In a few days I fall 48 chestnuts and, as happens when you get old, this summer during the holidays

I got to look back and review those things that have been happening to me throughout my life and

how I have influenced to become who I am.

And I realized I had to settle a historical debt.

My passion for computers started way back in the 80s when my father brought a brand new Spectrum

16K which gave him the bank with which I discovered the exciting world of video games. From there I

went to do a program in Basic and already in high school, I got head with C and UNIX. When finished

COU, I had only one thing in mind: to study Computer Science.

University and, after much effort 6 years old, I got my new title of Computer Engineer, thanks to

which I make my living today, making information systems for hospitals.

However, there is something I never did and was a thorn that had stuck. I never learned ASM Z80 (or

machine code, as he called the Microhobby) and managed to take full advantage of this wonderful machine

without whose entry into my life, perhaps it would be a degree in history unemployed (my other passion).

So after thinking about decided days to pay off my old debt, entering an unknown world for me, and I

decided to make a game for Spectrum in ASM pure and simple, since the challenge was not so much

finish a game and publish it but "dominate the beast "and learn to do what I was not able to accomplish

when I was a kid.

Excitedly, I began my journey to learn ASM Z80 impressive and indispensable reading my

course Compiler Soft, you can find in course Compiler Soft, you can find in course Compiler Soft, you can find in

https://wiki.speccy.org/cursos/ensamblador/indice , Examples typed in context and tested in Spectaculator https://wiki.speccy.org/cursos/ensamblador/indice , Examples typed in context and tested in Spectaculator https://wiki.speccy.org/cursos/ensamblador/indice , Examples typed in context and tested in Spectaculator https://wiki.speccy.org/cursos/ensamblador/indice , Examples typed in context and tested in Spectaculator https://wiki.speccy.org/cursos/ensamblador/indice , Examples typed in context and tested in Spectaculator

8.0, but I made it very difficult, because with this "IDE" debugging possibilities are not very complete. 8.0, but I made it very difficult, because with this "IDE" debugging possibilities are not very complete.

Around the summer, I went into several groups Telegram where people met a very experienced

group to which raise doubts and were contributing their bit to progresase on my way. In one of

these groups met César Hernández, developer of the wonderful ZEsarUX, Spectrum emulator these groups met César Hernández, developer of the wonderful ZEsarUX, Spectrum emulator these groups met César Hernández, developer of the wonderful ZEsarUX, Spectrum emulator

spectacular and growing, offering many of the tools that he missed, but even without an IDE as

integrated as was looking for.

One day, Caesar spoke in one group of a plugin for VS Code, the Z80 Debugger One day, Caesar spoke in one group of a plugin for VS Code, the Z80 Debugger

Thomas Busse, allowing debugging assembler in a very simple way from code running on ZEsarUXThomas Busse, allowing debugging assembler in a very simple way from code running on ZEsarUX

and providing the tools they had found so far. It was what I was looking for.

https://wiki.speccy.org/cursos/ensamblador/indice

Caesar told me he was working on UNIX and really had not had a beta tester of the IDE on

Windows. When I contacted Thomas, the answer was the same: things got interesting ...

After weeks of tests, ranting, headaches and hundreds of emails and messages with Cesar and

Thomas, and some other version they sent me correcting bugs, I got get it going and ... is

spectacular.

My effort would not be complete without this document that I hope will serve to other developers

without having to suffer what I have suffered, can leverage the work of Caesar and Thomas with

the sum of these tools so powerful to its creators dedicate so much time, effort and enthusiasm.

If the follow tutorial someone gets stuck at any point, or have any specific questions, you can contact me

by sending me an email to cesar.wagener@gmail.com and, if possible, I will try to lend a hand. by sending me an email to cesar.wagener@gmail.com and, if possible, I will try to lend a hand. by sending me an email to cesar.wagener@gmail.com and, if possible, I will try to lend a hand.

And now, let's get into job!

2. What you need to mount the IDE

Well, first I have to say is that everything I'll explain what I tried on a W10 Professional, but I

imagine it should work without problems on other Windows systems, and even move to Linux or

Mac without too much trouble.

To mount the environment, we will need the following tools:

mailto:cesar.wagener@gmail.com

• ZEsarUX emulator (Emulator ZX Second And Released for Unix): First linchpin. It is the ZEsarUX emulator (Emulator ZX Second And Released for Unix): First linchpin. It is the

emulator on which we will execute our code. Has many configuration options and own good

debugging tools, you can offer to external systems via sockets with ZRCP protocol. You can

find the source code, executable versions and documentation on it in https://github.com/chernandezba/zesaruxfind the source code, executable versions and documentation on it in https://github.com/chernandezba/zesarux

• MinGW compiler: I do not know if Caesar will have already uploaded a new official version, MinGW compiler: I do not know if Caesar will have already uploaded a new official version,

in my case I had to unburden ZEsarUX the source and compile it to access the latest

developments and bug fixes released by Caesar. You can descargaros the latest version

from the following link: https://sourceforge.net/projects/mingw/ . Additionally need version from the following link: https://sourceforge.net/projects/mingw/ . Additionally need version from the following link: https://sourceforge.net/projects/mingw/ . Additionally need version

1.2.15 of the unloaded the SDL (fichero SDL-devel-1.2.15 of the unloaded the SDL (fichero SDL-devel-

1.2.15-mingw32.tar.gz you can download it from this address: 1.2.15-mingw32.tar.gz you can download it from this address:

https://www.libsdl.org/download-1.2.php). https://www.libsdl.org/download-1.2.php).

• VS Code Editor: Tool from which to write the code will assemble and launch debugging. It VS Code Editor: Tool from which to write the code will assemble and launch debugging. It

is a tool widely used by Microsoft developers, although I acknowledge that I did not know.

We will use version 1.41 that you can download from this link:

https://code.visualstudio.com/download

https://github.com/chernandezba/zesarux
https://sourceforge.net/projects/mingw/
https://www.libsdl.org/download-1.2.php
https://code.visualstudio.com/download

We also have to get settled (if you have not already) the Node.js, which can be found here: https://nodejs.org/es/download/We also have to get settled (if you have not already) the Node.js, which can be found here: https://nodejs.org/es/download/

• Z80 Plugin Debug: Plugin that will install on VS Code and, using the ZRCP protocol, we Z80 Plugin Debug: Plugin that will install on VS Code and, using the ZRCP protocol, we

allow debug visually. You can find the source code and extensive documentation about this

plugin at:

https://github.com/maziac/z80-debug

Although you can install the plugin directly in a simple way from VS Code, Thomas sent me

a couple of versions to install manually from VSCode that correct things that do not work in

the "published" version. Until Thomas does not release official version 0.9.3, you have to

install the .VSIX file with the version 0.9.3-2 has prepared me specifically to correct a bug

that prevented properly inspect the value of records or view the contents of variables and

memory locations aimed at runtime.

• Assembler sjasmplus: It will be the tool with which, from the IDE, will assemble our Assembler sjasmplus: It will be the tool with which, from the IDE, will assemble our

programs. Although there are more advanced betas, I'm working with version v1.14.1, which

was released in August and can be downloaded from this address: https://github.com/z00m128/sjasmplus/releases/tag/v1.14.1was released in August and can be downloaded from this address: https://github.com/z00m128/sjasmplus/releases/tag/v1.14.1

. You have complete documentation on it in these other directions:

http://z00m128.github.io/sjasmplus/documentation.html or http://z00m128.github.io/sjasmplus/documentation.html or

https://github.com/sjasmplus/sjasmplus/wiki

https://nodejs.org/es/download/
https://github.com/maziac/z80-debug
https://github.com/z00m128/sjasmplus/releases/tag/v1.14.1
http://z00m128.github.io/sjasmplus/documentation.html
https://github.com/sjasmplus/sjasmplus/wiki

With all these elements downloaded and ready to be installed, we can get down to work!

3. Installing the emulator ZEsarUX

We begin with the "Heart of the Beast", the emulator ZEsarUX.

Step 1 - Download source code ZEsarUX

From the right page, click on the button Clone or download and download the file in the directory From the right page, click on the button Clone or download and download the file in the directory From the right page, click on the button Clone or download and download the file in the directory

zesarux-master.zip where we go to stop the emulator (in my case, D: \ Spectrum \ ZEsarUX)

After downloading the file, unzip it on the same directory and move on to the next point, which is to

install the MinGW to compile the source code ZEsarUX and get the .exe file of the emulator.

Step 2 - Installation and configuration of the MinGW

Once downloaded file mingw-get-setup.exe on the address, execute it and installed in the

directory C: \ MinGW with all the default options. At the installation is complete, we will open directory C: \ MinGW with all the default options. At the installation is complete, we will open directory C: \ MinGW with all the default options. At the installation is complete, we will open

the MinGW Installation Managerthe MinGW Installation Manager

where we have to choose to install the following packages:

In Basic Setup:In Basic Setup:

• Mingw-developer-toolkit

• mingw32-base

• mingw32-gcc-g ++

• msys-base

In All packages, you will have to add the following packages: In All packages, you will have to add the following packages: In All packages, you will have to add the following packages:

• mingw-pthreads (all packages that you see with this name)

• msys-bash

After selecting these packages, we apply the changes and we can close the MinGW Installation After selecting these packages, we apply the changes and we can close the MinGW Installation

Manager. Now you have to go away to the browser, copy to C: \ MinGW the file downloaded earlier with Manager. Now you have to go away to the browser, copy to C: \ MinGW the file downloaded earlier with Manager. Now you have to go away to the browser, copy to C: \ MinGW the file downloaded earlier with Manager. Now you have to go away to the browser, copy to C: \ MinGW the file downloaded earlier with

SDL libraries (SDL-devel-1.2.15mingw32.tar.gz) and uncompress. This will create a directory called us SDL-1.2.15SDL libraries (SDL-devel-1.2.15mingw32.tar.gz) and uncompress. This will create a directory called us SDL-1.2.15SDL libraries (SDL-devel-1.2.15mingw32.tar.gz) and uncompress. This will create a directory called us SDL-1.2.15SDL libraries (SDL-devel-1.2.15mingw32.tar.gz) and uncompress. This will create a directory called us SDL-1.2.15

to rename simply as sdl.to rename simply as sdl.

If all went well, in c: \ mingw \ sdl \ lib We have several files libSDL.dll * and in If all went well, in c: \ mingw \ sdl \ lib We have several files libSDL.dll * and in If all went well, in c: \ mingw \ sdl \ lib We have several files libSDL.dll * and in If all went well, in c: \ mingw \ sdl \ lib We have several files libSDL.dll * and in If all went well, in c: \ mingw \ sdl \ lib We have several files libSDL.dll * and in

c: \ mingw \ sdl \ include \ we will have a subfolder SDL within which there will be several files. h.c: \ mingw \ sdl \ include \ we will have a subfolder SDL within which there will be several files. h.c: \ mingw \ sdl \ include \ we will have a subfolder SDL within which there will be several files. h.c: \ mingw \ sdl \ include \ we will have a subfolder SDL within which there will be several files. h.c: \ mingw \ sdl \ include \ we will have a subfolder SDL within which there will be several files. h.

Our last step before compiling the .exe file will be added to the PATH system directories c: \ mingw \ bin and Our last step before compiling the .exe file will be added to the PATH system directories c: \ mingw \ bin and Our last step before compiling the .exe file will be added to the PATH system directories c: \ mingw \ bin and

c: \ mingw \ msys \ 1.0 \ bin.

Option a) from the control panel: Option a) from the control panel:

Option a) from the command line: Option a) from the command line:

Run cmd.exe and write set PATH =% PATH%; c: \ mingw \ bin; c: \ mingw \ msys \ Run cmd.exe and write set PATH =% PATH%; c: \ mingw \ bin; c: \ mingw \ msys \

1.0 \ bin

Step 3 - Compilation and configuration ZEsarUX

we are ready to compile our ZEsarUX. To do this, we will have to run cmd.exe, move to the

directory where you have unzipped the source code ZEsarUX (in my case d: \ spectrum \ ZesarUX

\ src) and run the command:

bash

we will display a prompt "bash.3.1 $ from which to launch the following command

./ Configure --enable-memptr --enable-visualmem --enable-cpustats

In the end, run make clean and finally make , So that the compilation will be launched. We left typing In the end, run make clean and finally make , So that the compilation will be launched. We left typing In the end, run make clean and finally make , So that the compilation will be launched. We left typing In the end, run make clean and finally make , So that the compilation will be launched. We left typing In the end, run make clean and finally make , So that the compilation will be launched. We left typing

bash exit and if all went well, we in our directory the brand new file src zesarux.exe with the bash exit and if all went well, we in our directory the brand new file src zesarux.exe with the bash exit and if all went well, we in our directory the brand new file src zesarux.exe with the bash exit and if all went well, we in our directory the brand new file src zesarux.exe with the bash exit and if all went well, we in our directory the brand new file src zesarux.exe with the

emulator executable.

Our last step is to copy the dll SDL.dll from MinGW to the current directory with the command: Our last step is to copy the dll SDL.dll from MinGW to the current directory with the command: Our last step is to copy the dll SDL.dll from MinGW to the current directory with the command:

copy c: \ mingw \ sdl \ bin \ SDL.dll.

Done this ... '' Now we can run our brand new set ZesarUX.exe and finish !!!! Nothing more

open, click on the mouse, see the following menu:

here we will select settings, in the following menu debug and this will mark the option ZRCP here we will select settings, in the following menu debug and this will mark the option ZRCP here we will select settings, in the following menu debug and this will mark the option ZRCP here we will select settings, in the following menu debug and this will mark the option ZRCP here we will select settings, in the following menu debug and this will mark the option ZRCP here we will select settings, in the following menu debug and this will mark the option ZRCP

Remote Protocol, setting the ZEsarUX port that will communicate with the plugin (by default, Remote Protocol, setting the ZEsarUX port that will communicate with the plugin (by default,

10000, although in my case gave me any problems and I have set for 12000)

ZEsarUX has hundreds of interesting and configurable aspects that you see sailing from their menus.

In order to debug, we do not need to configure anything else, and although not the subject of this

tutorial, here I encourage you to "bichear" with options so you can see the power of this great

emulator. Sure my namesake will be glad that you trasteéis and bring forth all possible options to

match your emulator.

4. Installing and configuring the VS Code

After downloading the executable file installer the Code VS from the address in paragraph 2 of the

document, simply run it and follow the instructions, accepting the default options when installing.

Once installed, if you you execute the program, you will find the following window:

Yours will not be exactly the same because the system will be in English, but now we go with it.

One more detail: I do not remember if I did the installer automatically, I advise checking that has been

added to the system path of the subdirectory bin the folder where you installed the VS Code ye (in my added to the system path of the subdirectory bin the folder where you installed the VS Code ye (in my added to the system path of the subdirectory bin the folder where you installed the VS Code ye (in my

case d: \ Microsoft VS Code \ bin)

Step 1 - Installing basic plugins

The first thing we do is install the basic additional plugins. To do this, pincharemos on the icon that

I have marked in a red circle, which will take us to the setup screen extensions:

To install a plugin simply look, click on it and in the right window, press the "Install" button

Now we will install the following additional plugins to Z80 Debug:

• Spanish Language Pack for Visual Studio Code. Will allow you to put your VS Code in Spanish Language Pack for Visual Studio Code. Will allow you to put your VS Code in

Spanish, if you feel more comfortable working in our mother tongue.

• ASM Code Lens, that's like the main plugin Z80 Debug is developed by Thomas Busse (aka ASM Code Lens, that's like the main plugin Z80 Debug is developed by Thomas Busse (aka

Maziac). This plugin will give us access to a number of very interesting tools when

debugging (locating references, hovering variables and registers, see the number of

references to a particular symbol, Assembler syntax highlighting ...).

• Z80 Unit Tests. Maziac also our friend. This plugin allows us to include in our ASM sources Z80 Unit Tests. Maziac also our friend. This plugin allows us to include in our ASM sources

certain unit tests for testing in debugging time, stopping the execution if the test is not met. I

have pending have a leisurely eye and see what you can do with it, but it looked great. If I

see it's worth, I promise to make an extension to this tutorial use (if someone does not do it

before me;).

• Z80 Assembly Meter: Grand plug Nestor Sancho, which determines the number of clock Z80 Assembly Meter: Grand plug Nestor Sancho, which determines the number of clock

cycles that instructions consume we select from the publisher, and the size thereof

bytecodes. In order for this plugin to work, you will have to make a small adjustment:

or We open the command console with Ctrl + Shift + P 'or We open the command console with Ctrl + Shift + P 'or We open the command console with Ctrl + Shift + P '

or select Open Configuration Preferences (JSON You preferences or select Open Configuration Preferences (JSON You preferences or select Open Configuration Preferences (JSON You preferences or select Open Configuration Preferences (JSON You preferences

Open Settings JSON).

or At the entrance z80-asm_meter-languageIds add, "Asm-collection" or At the entrance z80-asm_meter-languageIds add, "Asm-collection" or At the entrance z80-asm_meter-languageIds add, "Asm-collection" or At the entrance z80-asm_meter-languageIds add, "Asm-collection" or At the entrance z80-asm_meter-languageIds add, "Asm-collection"

Now, whenever we select one or more lines of code, the status bar will show the size

in bytes, the number of clock cycles that consume and (or) opcodes of the selected

operations.

Step 2 - Installing the plugin Z80 Debugger

Although this plugin can also be installed from the installation screen extensions, if you seek there

you will find the v.0.9.2 version, and unfortunately, this version contains a bug that causes many

problems during debugging, so you'll have to install the v.0.9.3-2 beta facilitated my own Thomas

Busse (and which you will find in the same zip where is this document) having a slightly different

installation process.

The first step is to decompress the file z80-debug-0.9.3-2.vsix on a working folder. Now from VS The first step is to decompress the file z80-debug-0.9.3-2.vsix on a working folder. Now from VS The first step is to decompress the file z80-debug-0.9.3-2.vsix on a working folder. Now from VS

Code, we will go to the "View" menu and then select the option Command Palette.Code, we will go to the "View" menu and then select the option Command Palette.

In doing so, a window will open where we find " Extensions: Install from file VSIX ". Now In doing so, a window will open where we find " Extensions: Install from file VSIX ". Now In doing so, a window will open where we find " Extensions: Install from file VSIX ". Now

select the file z80-debug-0.9.3-2.vsix, select the file z80-debug-0.9.3-2.vsix,

We accept and see how our plugin is installed perfectly. We are already ending.

Step 3 - Install node.js and assembler SJASMPLUS

The last two tools you have to install are the node.js and SJASMPLUS. For the first, simply run the

file node-v12.13.1-x64.msi we will have downloaded, run it and install with default options. file node-v12.13.1-x64.msi we will have downloaded, run it and install with default options. file node-v12.13.1-x64.msi we will have downloaded, run it and install with default options.

SJASMPLUS installation is even simpler. After downloading the file sjasmplus-

1.14.3.win.zip of the address, just have to unpack to the directory ye (in my case d: \ Spectrum \

tools \ sjasmplus-1.14.3.win) and add to the path of the directory system as explained during the

passage of the MinGW installation.

Made this last step, we can open our VS Code and prepare to start debugging. 'Let's mess !!

6. Creating our integrated IDE to debug

6.1 - Open the folder with our sample program

To illustrate debugging with our new IDE, I'll use a couple of sample programs included in the

course Compiler soft: One shows a complete charset and another painting a map of a level of course Compiler soft: One shows a complete charset and another painting a map of a level of course Compiler soft: One shows a complete charset and another painting a map of a level of

sokoban program. You can find the source code (and files tasks.json and launch.json) in the file Ejemplos.rarsokoban program. You can find the source code (and files tasks.json and launch.json) in the file Ejemplos.rarsokoban program. You can find the source code (and files tasks.json and launch.json) in the file Ejemplos.rarsokoban program. You can find the source code (and files tasks.json and launch.json) in the file Ejemplos.rarsokoban program. You can find the source code (and files tasks.json and launch.json) in the file Ejemplos.rarsokoban program. You can find the source code (and files tasks.json and launch.json) in the file Ejemplos.rar

that Annex to this tutorial.

A decompressing the file, find the following content:

• LIBSprites.asm: Library routines for handling sprites. LIBSprites.asm: Library routines for handling sprites.

• LIBScr.asm: Library routines for handling screen. LIBScr.asm: Library routines for handling screen.

• LIBCharset.asm: Library routines for handling charsets. LIBCharset.asm: Library routines for handling charsets.

• Ejemplo_Charset.asm: File with the main routine of the first example Ejemplo_Charset.asm: File with the main routine of the first example

• Ejemplo_charset.list and .labels: generated during assembly and necessary for debugging Ejemplo_charset.list and .labels: generated during assembly and necessary for debugging

• Ejemplo_mapa_tiles.asm: File with the main routine of the second example Ejemplo_mapa_tiles.asm: File with the main routine of the second example

• Ejemplo_mapa_tiles.list and .labels: generated during assembly and necessary for Ejemplo_mapa_tiles.list and .labels: generated during assembly and necessary for

debugging

• folder .vscode It is containing files tasks.json and launch.json, necessary to launch the folder .vscode It is containing files tasks.json and launch.json, necessary to launch the folder .vscode It is containing files tasks.json and launch.json, necessary to launch the folder .vscode It is containing files tasks.json and launch.json, necessary to launch the folder .vscode It is containing files tasks.json and launch.json, necessary to launch the folder .vscode It is containing files tasks.json and launch.json, necessary to launch the

assembly from VS and begin debugging Code respectively.

Unzip the zip file in a working folder and start the VS Code. Ideally, create a new workspace (option File Unzip the zip file in a working folder and start the VS Code. Ideally, create a new workspace (option File

are listed \ Save Workspace as ...) and include in the same folder where you have downloaded the are listed \ Save Workspace as ...) and include in the same folder where you have downloaded the are listed \ Save Workspace as ...) and include in the same folder where you have downloaded the

code from the option

\ File add folder to the workspace. If we have done well, we will see a screen similar to this: \ File add folder to the workspace. If we have done well, we will see a screen similar to this:

In the bar we have left, mainly we use two options:

• Explorer (first icon from the top) to browse files.

• Debug and run (icon of the "bug") to launch debugging

6.2 - Files tasks.json and launch.json

In all our projects, we have a directory called. vscode hanging from the root directory where we have In all our projects, we have a directory called. vscode hanging from the root directory where we have In all our projects, we have a directory called. vscode hanging from the root directory where we have

two very important files: the tasks.json and the two very important files: the tasks.json and the two very important files: the tasks.json and the

launch.json. While you can create by other means, my advice is that you have a master copy of this launch.json. While you can create by other means, my advice is that you have a master copy of this

directory and for each project, the modifiquéis files and copy them as appropriate, since it is the most

comfortable option.

Let's talk now about these files, what they are and how they are used.

FILE TASKS.JSON

Through this file, we can define commands or tasks that can be launched from VS Code. In our

case, we will create two tasks:

• One that will invoke the sjasmplus to join our code and generate files. lst and . labels you One that will invoke the sjasmplus to join our code and generate files. lst and . labels you One that will invoke the sjasmplus to join our code and generate files. lst and . labels you One that will invoke the sjasmplus to join our code and generate files. lst and . labels you One that will invoke the sjasmplus to join our code and generate files. lst and . labels you One that will invoke the sjasmplus to join our code and generate files. lst and . labels you One that will invoke the sjasmplus to join our code and generate files. lst and . labels you

need the debugger for debugging step by step.

• Another ZEsarUX to call before launching debugging. For this second case, we will create

a file called zesarux.bat to be positioned in the directory where is ZEsarUX and run. In my

case, this file contains the following commands:

d: cd

\

zesarux cd cd cd

src spectrum

exit zesarux

Although we can define more tasks, our file input tasks.json have the following structure:

Let's see the main tags this file:

• Label: Contain the name you will see the task if we try to run it from the option terminal Label: Contain the name you will see the task if we try to run it from the option terminal Label: Contain the name you will see the task if we try to run it from the option terminal

\ perform task ...

• type: Here we indicate that the task will run on a Shell type: Here we indicate that the task will run on a Shell

• Command: Name of the command that will launch from Shell, in our case, sjasmplus.Command: Name of the command that will launch from Shell, in our case, sjasmplus.Command: Name of the command that will launch from Shell, in our case, sjasmplus.

• args: contain a list of different parameters to be passed to the command to be executed args: contain a list of different parameters to be passed to the command to be executed

from the shell. In our case will be the name of the file. list generate (our main file without its from the shell. In our case will be the name of the file. list generate (our main file without its from the shell. In our case will be the name of the file. list generate (our main file without its

extension, adding

. list), assemble the file and the file name tags to generate (again, the name of our main file . list), assemble the file and the file name tags to generate (again, the name of our main file

without adding extension

.labels):

• "--Lst = $ {fileBasenameNoExtension} .list" , "--Lst = $ {fileBasenameNoExtension} .list" ,

• "$ {FileBasename}" , "$ {FileBasename}" ,

• "--Sym = $ {fileBasenameNoExtension} .labels"

• The remaining tags are standard. Including highlighting group, where we will establish our The remaining tags are standard. Including highlighting group, where we will establish our The remaining tags are standard. Including highlighting group, where we will establish our

task is a task of compiling and also be the default task, to launch pressing b Shift + Ctrl +task is a task of compiling and also be the default task, to launch pressing b Shift + Ctrl +

In the tasks file shown in the image, we create the two tasks: one to invoke the assembler will

run b Shift + Ctrl + and another to call ZEsarUX. To launch it, we will assign a key run b Shift + Ctrl + and another to call ZEsarUX. To launch it, we will assign a key run b Shift + Ctrl + and another to call ZEsarUX. To launch it, we will assign a key

combination: ctrl + zcombination: ctrl + z

• From the menu View \ Command Palette ... select Open keyboard shortcuts From the menu View \ Command Palette ... select Open keyboard shortcuts From the menu View \ Command Palette ... select Open keyboard shortcuts From the menu View \ Command Palette ... select Open keyboard shortcuts

(JSON)

• Add the code shown in the image and recorded

6.2 - Assembly of the ASM code SJASMPLUS

To see that all is well defined, since the browser will select the file ejemplo_mapa_tiles.asm and

pressing the combination of keys indicated, launch assembly whose result will see in the debug

console:

For you to come to the world PASMO, you step needed some syntax changes between PASMO

and sjasmplus you have to do in your program if you will not have a bunch of assembly errors:

• All tags should begin in the first column, leaving no space because otherwise be

considered directives or instructions, resulting in error.

• All instructions or directives must leave the least space not to be considered labels.

• Our program will start with the directive DEVICE indicating the type of machine that will

generate the SNA file (ZXSPECTRUM48, ZXSPECTRUM128, etc.)

• Will have to define a label for the input routine, which then pass to the SNA it generates

directive file use to debug.

• Definition battery life: although I have not deep enough, seems to be defined zones start

and end of the stack. For this you need to add the following code:

; === ================ ==========;

Stack.

; === ================ ==========

; Stack: this area is reserved for the stack

STACK_SIZE : equ 10STACK_SIZE : equ 10STACK_SIZE : equ 10STACK_SIZE : equ 10 ; in words

; Book stack space

stack_bottom : stack_bottom :

defs STACK_SIZE * two , 0STACK_SIZE * two , 0STACK_SIZE * two , 0STACK_SIZE * two , 0STACK_SIZE * two , 0

stack_top : DEFB 0 ; WPMEMstack_top : DEFB 0 ; WPMEMstack_top : DEFB 0 ; WPMEMstack_top : DEFB 0 ; WPMEMstack_top : DEFB 0 ; WPMEM

In addition to making the next load in SP to the start of the main routine:

; Setup stack

ld sp , stack_topld sp , stack_topld sp , stack_topld sp , stack_top

6.3 - Launching a debugging session

Well, the great moment has come: let's debug the first example. For it:

• we will open Ejemplo_charset.asm

• Assemble it by pressing CTRL + SHIFT + bAssemble it by pressing CTRL + SHIFT + b

• we started with ZEsarUX ctrl + zwe started with ZEsarUX ctrl + z

• Press F5 to launch debugging

6. Introduction to debug

Although the tool allows Advanced Options debugging (conditional breakpoints, inspecting areas of

specific memory, etc.), it has not yet had time to delve into them and little I can tell you in this

regard, so you'll have to research a little documentation mentioned at the beginning of the document

and try, try and try.

In any case, if I can give a small outline of what basic tools we offer the IDE to debug:

Areas I checked are:

• A - Command Bar: It offers the usual options for debugging, as they are to continue, step A - Command Bar: It offers the usual options for debugging, as they are to continue, step

by step procedures, step by step instructions, out of the routine, back in the running,

reverse, restart and finish debugging. In the code window (labeled B) are marked in green

executed instructions.

• B - Area code: Shows the code that we are running. Putting the cursor on a variable or B - Area code: Shows the code that we are running. Putting the cursor on a variable or

label, we can see its value and content of the memory area to which it points. By pressing

the right button, we can see and browse the definition of a routine or variable references in

the code has run to that position, etc.

• C - Zone variables: View and modify the values ​​of the records, shadow, see the C - Zone variables: View and modify the values ​​of the records, shadow, see the

disassembled code, memory areas or content of the stack.

• D - Inspection Zone: Lets you add variables to be inspected during execution of the D - Inspection Zone: Lets you add variables to be inspected during execution of the

program code

• E - Call Stack: It indicates that point we find exactly the execution. E - Call Stack: It indicates that point we find exactly the execution.

• F - Inspection Zone memory: We can view (and change) the values ​​contained in F - Inspection Zone memory: We can view (and change) the values ​​contained in

specific memory areas. By default displays the areas targeted by HL, DE, BC, IX and IY

registers. However, if from the Debug Console (zone H) write -MD address bytes (-MD eg registers. However, if from the Debug Console (zone H) write -MD address bytes (-MD eg registers. However, if from the Debug Console (zone H) write -MD address bytes (-MD eg

0x8000 10), it will show a new window with that area of ​​memory and the number of bytes

marked.

• G - Breakpoints: It allows you to add breakpoints. We can also do this by double clicking G - Breakpoints: It allows you to add breakpoints. We can also do this by double clicking

on the left of any line of code.

• H - Debug Console: From here we can launch specific commands during debugging. I H - Debug Console: From here we can launch specific commands during debugging. I

recommend launching a - help to see a list of available commands. recommend launching a - help to see a list of available commands. recommend launching a - help to see a list of available commands.

• I - Debug Menu: It lets you access the main debugging options. I - Debug Menu: It lets you access the main debugging options.

7. Now what?

Well, at this point and will only put you to program is like madmen in ASM and to discover all

the possibilities offered by the combination of these tools.

For my part, I will continue researching / studying the following aspects:

• Syntax and possibilities sjasmplusSyntax and possibilities sjasmplus

• And additional configuration possibilities ZEsarUXAnd additional configuration possibilities ZEsarUX

• Debugging capabilities offered by the plugin Z80 DebugDebugging capabilities offered by the plugin Z80 Debug

• Using Test Unit Z80 in my programs

As you progress along those lines, I will publish updates to the tutorial with everything that you

discover.

7. Acknowledgments

Finally, I have to finish with the public thanks to several people who have been helping me in

every problem I have encountered along the way and who have put their bit to have completed

this tutorial.

Specifically, I want to mention especially:

• César Hernández, for making an emulator like ZEsarUX, which offers a world of César Hernández, for making an emulator like ZEsarUX, which offers a world of

possibilities, but mostly because of its proximity, cordiality and interest in helping me

at every step. 'THANK YOU !!! Namesake

• Thomas Busse, for giving us such a brutal plugin that squeezes all the possiblities Thomas Busse, for giving us such a brutal plugin that squeezes all the possiblities

ZEsarUX and your kindness when answering my questions, issues, problems and, above

all, for giving a specific version for Windows that corrected all the bugs I did not allow

debug as I was looking for.

• Nestor Sancho, for their sympathy and quick help to run your plugin without colliding Nestor Sancho, for their sympathy and quick help to run your plugin without colliding

with other plugins I've had to install.

• My fellow groups "Assembler ZX Spectrum" and "Retrodevs".

Your closeness, help, comments and others are key to progress in my dream "tame the

beast"

And I will end with this tutorial serve for a single person to use the development environment

and make the most, the effort has cost me

learn (and later write) everything you need to mount it will have been worthwhile.

I would like, if you use this tutorial, I contactéis me by mail or telegram (my Nick is @Metaprime)

to share questions, problems, progress and others.

See you on the forums!

César Wagener Moriana in Seville December 14, 2019.

Randomize usr 0

