Content

1. Prologo two
2. What you need to mount the IDEcccccciiniiiinininianns e 3
3. Installing the emulator ZESarUXccucccriinimminnsnninnssnmisenninns snsssssmssssssmsssmmsssmsnssmns 6
Step 1 - Download the source code ZESarUXcocceoiiiiiiiiiinieiiiiis et 6
Step 2 - Installation and configuration of the MiNGWccccoiiiiiiiiiiiiit e 7
Step 3 - Compilation and configuration ZESarUXccccoeiieiiiiiiieniniiienis cveesiieenee e 8
4. Installing and configuring the VS Code eleven
Step 1 - Installing basic PIUGINSc.cociiiiiii s e 12
Step 2 - Installing the plugin Z80 DebUGQGETccoiiiiiiiiiiiiiieieies e 14
Step 3 - Install node.js and assembler SUASMPLUScccccoviiiieeniie e ceeieen fifteen
6. Creating our integrated IDE to debug ... crremeencennes fifteen
6.1 - Open the folder with our sample programccccvceeniiiiiencniies e fifteen
6.2 - Files tasks.json and launCh.jSONcccoiiiiiiiiiiiiiiciies e 16
6.2 - Assembly of the ASM code SJASMPLUSooiiiiiiiiie e e 19
6.3 - Launch of the debugging SESSIONccooiiiiiiiiiiiiiie s e twenty
6. Introduction to debug ... e ———————————— twenty
7. Now What?ccciniiinieninensnsssssnsnanes e e 2.3

7.

Acknowledgments 2.3

1. Prologo
I'm getting old.

In a few days | fall 48 chestnuts and, as happens when you get old, this summer during the holidays
| got to look back and review those things that have been happening to me throughout my life and
how | have influenced to become who | am.

And | realized | had to settle a historical debt.

My passion for computers started way back in the 80s when my father brought a brand new Spectrum
16K which gave him the bank with which | discovered the exciting world of video games. From there |
went to do a program in Basic and already in high school, | got head with C and UNIX. When finished
COU, | had only one thing in mind: to study Computer Science.

University and, after much effort 6 years old, | got my new title of Computer Engineer, thanks to
which | make my living today, making information systems for hospitals.

However, there is something | never did and was a thorn that had stuck. | never learned ASM Z80 (or
machine code, as he called the Microhobby) and managed to take full advantage of this wonderful machine

without whose entry into my life, perhaps it would be a degree in history unemployed (my other passion).

So after thinking about decided days to pay off my old debt, entering an unknown world for me, and |
decided to make a game for Spectrum in ASM pure and simple, since the challenge was not so much
finish a game and publish it but "dominate the beast "and learn to do what | was not able to accomplish

when | was a kid.

Excitedly, | began my journey to learn ASM Z80 impressive and indispensable reading my
course Compiler Soft, you can find in
https://wiki.speccy.org/cursos/ensamblador/indice , Examples typed in context and tested in Spectaculator

8.0, but | made it very difficult, because with this "IDE" debugging possibilities are not very complete.

Around the summer, | went into several groups Telegram where people met a very experienced
group to which raise doubts and were contributing their bit to progresase on my way. In one of
these groups met César Hernandez, developer of the wonderful ZEsarUX, Spectrum emulator
spectacular and growing, offering many of the tools that he missed, but even without an IDE as
integrated as was looking for.

One day, Caesar spoke in one group of a plugin for VS Code, the Z80 Debugger
Thomas Busse, allowing debugging assembler in a very simple way from code running on ZEsarUX
and providing the tools they had found so far. It was what | was looking for.

https://wiki.speccy.org/cursos/ensamblador/indice

Caesar told me he was working on UNIX and really had not had a beta tester of the IDE on

Windows. When | contacted Thomas, the answer was the same: things got interesting ...

After weeks of tests, ranting, headaches and hundreds of emails and messages with Cesar and
Thomas, and some other version they sent me correcting bugs, | got get it going and ... is

spectacular.

' INSPECCION

 PILA DELLAMADAS

Lin.57,Col 1 Espacios2 UTF-8 CRIF Assemblerfle & 01

My effort would not be complete without this document that | hope will serve to other developers
without having to suffer what | have suffered, can leverage the work of Caesar and Thomas with
the sum of these tools so powerful to its creators dedicate so much time, effort and enthusiasm.

If the follow tutorial someone gets stuck at any point, or have any specific questions, you can contact me

by sending me an email to cesar.wagener@gmail.com and, if possible, | will try to lend a hand.

And now, let's get into job!

2. What you need to mount the IDE

Well, first | have to say is that everything I'll explain what | tried on a W10 Professional, but |

imagine it should work without problems on other Windows systems, and even move to Linux or
Mac without too much trouble.

To mount the environment, we will need the following tools:

mailto:cesar.wagener@gmail.com

ZEsarUX emulator (Emulator ZX Second And Released for Unix): First linchpin. It is the
emulator on which we will execute our code. Has many configuration options and own good
debugging tools, you can offer to external systems via sockets with ZRCP protocol. You can
find the source code, executable versions and documentation on it in https://github.com/chernandezba/zesarux

LwPC:ves BM-H:View

PC 8SCS
SP 87FA
AF 9442°SAQC

Q000 Q000 0PER QPR® QL0

aum s m :Stp_StEvr EntsSt Md
L] rxpgﬂtch To EII RU! Emnw
rTst L | -1

art te Scr Mem

®0AD b Gemplo Mapa Ties (Femplo Mapa Tiles) Un 57,Co2 Epacos:2 UTFS CRIF Asembierfie © 01

Ell © Escribe aqui para buscar

MinGW compiler: | do not know if Caesar will have already uploaded a new official version,
in my case | had to unburden ZEsarUX the source and compile it to access the latest
developments and bug fixes released by Caesar. You can descargaros the latest version
from the following link:_https://sourceforge.net/projects/mingw/ . Additionally need version
1.2.15 of the unloaded the SDL (fichero SDL-devel-

1.2.15-mingw32.tar.gz you can download it from this address:
https://www.libsdl.org/download-1.2.php).

VS Code Editor: Tool from which to write the code will assemble and launch debugging. It
is a tool widely used by Microsoft developers, although | acknowledge that | did not know.
We will use version 1.41 that you can download from this link:

https://code.visualstudio.com/download

https://github.com/chernandezba/zesarux
https://sourceforge.net/projects/mingw/
https://www.libsdl.org/download-1.2.php
https://code.visualstudio.com/download

Un 57,Col2 Espacios2 UTF-8 CRLF Assembler
ESP
Es

- - O

We also have to get settled (if you have not already) the Node.js, which can be found here:_https://nodejs.org/es/download/

Z80 Plugin Debug: Plugin that will install on VS Code and, using the ZRCP protocol, we
allow debug visually. You can find the source code and extensive documentation about this
plugin at:

https://github.com/maziac/z80-debug

Although you can install the plugin directly in a simple way from VS Code, Thomas sent me
a couple of versions to install manually from VSCode that correct things that do not work in
the "published" version. Until Thomas does not release official version 0.9.3, you have to
install the .VSIX file with the version 0.9.3-2 has prepared me specifically to correct a bug
that prevented properly inspect the value of records or view the contents of variables and
memory locations aimed at runtime.

Assembler sjasmplus: It will be the tool with which, from the IDE, will assemble our
programs. Although there are more advanced betas, I'm working with version v1.14.1, which
was released in August and can be downloaded from this address: https://github.com/z00m128/sjasmplus/releases/tac

. You have complete documentation on it in these other directions:

http://z00m128.qgithub.io/sjasmplus/documentation.html or

https://github.com/sjasmplus/sjasmplus/wiki

https://nodejs.org/es/download/
https://github.com/maziac/z80-debug
https://github.com/z00m128/sjasmplus/releases/tag/v1.14.1
http://z00m128.github.io/sjasmplus/documentation.html
https://github.com/sjasmplus/sjasmplus/wiki

©) chemandezbatzesanc ZEse % |) Relesses - sissmplus/siosmp X | G siasmplus win - Buscarcon < x| [sissmp % | € Release sasmphisvitdl £ X €) Relesse sismpluswliat X | - o x

(SRRt comy/200m 128/sjasmplus/releases/tag/v1.14.1 o+ OO0 @B ~BA Tt ®

icaciones - Bookmark o
Pull requests Issues Marketplace Explore
sjasmplus OWatch 18 KSar 62 Yok 20
<> Code 2! equs 0 P 0

sjasmplus v1.14.1

& z00m128 thi X b

 refactored SHELLEXEC to use clib

)" on all platforms (also MS VS), minor fixes

« lua example "inc_text” (result of specific request from sjasmplus user)

o listing fixed when Lua was used to emit bytes and also parsed lines of assembly sourc

* MinGW windows exe prefers */ uld still work on windc ly))

o lot of small bugfixes and Cir AinGW build does run full tests

* MS$ VS builds stabilized a GW builds (99

eaks)

UnitTest++ fram, + unit tests, f sts added

v Assets

sjasmplus-114.1.win.zip

n R Escribe aquf para buscar

With all these elements downloaded and ready to be installed, we can get down to work!

3. Installing the emulator ZEsarUX
We begin with the "Heart of the Beast", the emulator ZEsarUX.

Step 1 - Download source code ZEsarUX
From the right page, click on the button Clone or download and download the file in the directory

zesarux-master.zip where we go to stop the emulator (in my case, D: \ Spectrum \ ZEsarUX)

x () Releases . sjasmplus/sjasmpl X | G sjasmplus win - Buscarcon ¢ x | < Download File List - Mingw x|) 1 notificacion x | €) meziaczBi-debug:Debug s x | + - o X
<« C @ githubcom oo E@m~@ L 2
i ones J Boakmarks Personal Cesar . Profesional
Pull requests Issues Marketplace Explore
chernandezba / zesarux @watch> 29 desar 148 Yok 2
<3 Code Pull requests © Actions Security nsights

ZEsarUX - ZX Second-Emulator And Released for UniX

e emulator 2 aspec 281 sindair sndaiql 88 sam-coupe prism chome pentagon zwune
nevolution tbblue specum-next inves Tore

3 5,508 commits 1 branch 90 packages 1.4 contributors
Branch: master ~ New pull request Create new flle | Upload files Find file
Z chemandezha mc Latest commit
W screenshots modified readme screenshats 2 years ago
s me
=) gitignore adjusting .giti gnore generated files on my linux box 1 months age
E) READMEmd me yeste
&8 README.md

ZEsarUX - ZX Second-Emulator And Released for UniX

Frnntad b

After downloading the file, unzip it on the same directory and move on to the next point, which is to
install the MinGW to compile the source code ZEsarUX and get the .exe file of the emulator.

Step 2 - Installation and configuration of the MinGW

Once downloaded file mingw-get-setup.exe on the address, execute it and installed in the
directory C: \ MinGW with all the default options. At the installation is complete, we will open
the MinGW Installation Manager

where we have to choose to install the following packages:

In Basic Setup:

* Mingw-developer-toolkit
* mingw32-base
* mingw32-gcc-g ++

. msys-base
In All packages, you will have to add the following packages:

* mingw-pthreads (all packages that you see with this name)

* msys-bash

After selecting these packages, we apply the changes and we can close the MinGW Installation

Manager. Now you have to go away to the browser, copy to C: \ MinGW the file downloaded earlier with

SDL libraries (SDL-devel-1.2.15mingw32.tar.gz) and uncompress. This will create a directory called us SDL-1.2.15

to rename simply as sdl.

If all went well, in ¢: \ mingw \ sdl \ lib We have several files libSDL.dIl * and in

c: \ mingw \ sdl \ include \ we will have a subfolder SDL within which there will be several files. h.

Our last step before compiling the .exe file will be added to the PATH system directories c¢: \ mingw \ bin and

c: \ mingw \ msys \ 1.0 \ bin.

Option a) from the control panel:

Propiedades del sistema

Hardware
Acceso remoto

Nombre de equipo

Opciones avanzadas Proteccion del sistema

Para realizar la mayoria de estos cambios, inicie sesién como administrador.
Rendimiento

Efectos visuales, programacién del procesador, uso de memoria y memoria

virtual
guraci

Perfiles de usuario

[i6n del escritorio corresp al inicio de sesidn

Configuracion.

Inicio y recuperacion

Inicio del sistema. errores del sistema e informacién de depuracion

Configuracion.

Variables de entomno...

Aceptar Cancelar Aplicar

Editar variable de entomo x

Nuevo

C\Windows\system32
CWindows Modificar

C:AWindows\System32\Wbem

[= 2Windowsf nell].O Examin
CAWindows\System32\OpenSSH\

CAProgram Files\Intel\WiFi\bin\

C\Program Files\Common Files\Intel\WirelessCommon,
C\Program Files (xB6)\NVIDIA Corporation\PhysX\Common
CiProgram Files\Calibre2\

CAProgram Files\NVIDIA Corporation\NVIDIA NvDLISR
%SystemRootH\system32

%SystemRoot¥%

%SystemROOI%\System32\Whem
%SYSTEMROOTS\System32\WindowsPowerShell\w1.0\
%SYSTEMROOTEASystem32\0pensSHY

CiProgram Files (xB6)\Common Files\Ulead Systems\MPEG
CiPiss

AMinGWAmsys\
AMinGWAbIn

Eliminar

Subir

Bajar

Edifar texto..

Cancelar

Option a) from the command line:

Variables de entorno

Variables de usuario para Cesar

Variable
JD2_HOME
OneDrive
OneDriveConsumer
Path

TEMP

™P

Valor

d:\Users\Cesar\AppData\Local\JDownloader 2.0
C:\Users\Cesar\OneDrive

C\Users\Cesar\OneDrive

CA\Users\Cesar\ AppData\Local\Microsaft\WindowsApps,CAPr...
C\Users\Cesar\AppData\Local\Temp
CA\Users\Cesar\AppData\Local\Temp

Variables del sistema

Nueva.. Editar. Eliminar

Variable

ComSpec

DriverData
NUMBER_OF_PROCESSORS
0S

PROCESSOR_ARCHITECTU...

Valor

CAWINDOWS\system32\cmd.exe
C\Windows\System32\Drivers\DriverData
4

Windows_NT

Eliminar

Cancelar

Run cmd.exe and write set PATH =% PATH%; c: \ mingw \ bin; c: \ mingw \ msys \

1.0\ bin

Step 3 - Compilation and configuration ZEsarUX

we are ready to compile our ZEsarUX. To do this, we will have to run cmd.exe, move to the
directory where you have unzipped the source code ZEsarUX (in my case d: \ spectrum \ ZesarUX

\ src) and run the command:

bash

we will display a prompt "bash.3.1 $ from which to launch the following command

.I Configure --enable-memptr --enable-visualmem --enable-cpustats

Simbolo del sistema - bash

sualmem --enable-cpustats

ZEsarUX

ating system .

gce compiler . /mingw/bin/gcc . exe
of char

of short .

stdout functions not found
impletext functions ... found

fbdev functions ... not found
librari ... not found

not found
not found
. not found
disabled
not found
. disabled
ndows vidmode extensions ... disabled
ix threa found
ealtime schedulling ... not found
r audio dsp ... not found
audio alsa not found
r audio puls . not found
coreaudio ... not found
Cocoa Mac 0S X GUI ... not found
dl libr . found
libsndfile not found
linux real joystick ... not found

-I/c/mingw/SDL/include
/SDL/1ib -1SDL

Creating Makefile

In the end, run make clean and finally make , So that the compilation will be launched. We left typing

bash exit and if all went well, we in our directory the brand new file src zesarux.exe with the
emulator executable.

BN Simbolo del sistema

>make clean
sar smpatap 80 tapabin bin_sprite_to _c leezx81 file_to_eprom bmp_to_prism_4_planar bmp_to
spedtotxt install.sh
binta emp/ sour temp/ ZEsarUX win-8.
maco

-I/c/min /include -c charset.c
MINGW -I/c/ming include -c scrsimpletext.c
-DMINGW -I/c/ming include -c scrsdl.c
ick_sdl_init":
passing argument 1 of 'menu_tape_settings trunc_name' discards "const' qualifier from pointer|
qualifiers]
_trunc_name(SDL_JoystickName(®),realjoystick j n EALJOYSTICK E);

In file included from

ftrom

from

from

note:

'n void menu_tape_se

Our last step is to copy the dil SDL.dII from MinGW to the current directory with the command:

copy c: \ mingw \ sdl \ bin \ SDL.dII.

Done this ... " Now we can run our brand new set ZesarUX.exe and finish !!!! Nothing more
open, click on the mouse, see the following menu:

B ZEsarUX 8.1-5N -] x

¥ ZEsarlldx w.
Smart Load
Machine
Storage
Snapshot
Audio

emulator

ra buscar

here we will select settings, in the following menu debug and this will mark the option ZRCP
Remote Protocol, setting the ZEsarUX port that will communicate with the plugin (by default,
10000, although in my case gave me any problems and | have set for 12000)

B | ZEsarUX 8.1-SN - O X

= : i =
L 1 Show registers in console
L 1 Show invalid opcode
L 1 Step owver interrupt
[x] Show displad on debug
L 1] Shows electron on debug
[3] WVerbose Lewel
[x] Always verbosze console
L 1 Dump =s=napshot on panic
[x] ZRCP Remote protocol
[12@@8@] Remote protocol port
[1 Hardware debug ports
Ereakp. behawviour [0On Change]l
Show Ffired breakpoint [Alwads]
ESC Back

@ 1956 Sinclair Research Ltd

ra buscar (o} m e B aa ™ @& Jg
ZEsarUX has hundreds of interesting and configurable aspects that you see sailing from their menus.
In order to debug, we do not need to configure anything else, and although not the subject of this
tutorial, here | encourage you to "bichear" with options so you can see the power of this great
emulator. Sure my namesake will be glad that you trasteéis and bring forth all possible options to
match your emulator.

4. Installing and configuring the VS Code

After downloading the executable file installer the Code VS from the address in paragraph 2 of the

document, simply run it and follow the instructions, accepting the default options when installing.

Once installed, if you you execute the program, you will find the following window:

pu

Visual Studio Code

Yours will not be exactly the same because the system will be in English, but now we go with it.

One more detail: | do not remember if | did the installer automatically, | advise checking that has been
added to the system path of the subdirectory bin the folder where you installed the VS Code ye (in my
case d: \ Microsoft VS Code \ bin)

Step 1 - Installing basic plugins
The first thing we do is install the basic additional plugins. To do this, pincharemos on the icon that
| have marked in a red circle, which will take us to the setup screen extensions:

Bienvenido %

R . . Visual Studio Code

asm edicion mejora

780 Debugger
g adapter f

* RECOMENDADO

> DESHABILITADO
0

P Escribe aqui para buscar

Z80 Unit Tests

maziac

&

Zeus 280 Assembly «

0" @ ° N

@00

Now we will install the following additional plugins to Z80 Debug:

* Spanish Language Pack for Visual Studio Code. Will allow you to put your VS Code in

Spanish, if you feel more comfortable working in our mother tongue.

+ ASM Code Lens, that's like the main plugin Z80 Debug is developed by Thomas Busse (aka
Maziac). This plugin will give us access to a number of very interesting tools when
debugging (locating references, hovering variables and registers, see the number of
references to a particular symbol, Assembler syntax highlighting ...).

« Z80 Unit Tests. Maziac also our friend. This plugin allows us to include in our ASM sources
certain unit tests for testing in debugging time, stopping the execution if the test is not met. |
have pending have a leisurely eye and see what you can do with it, but it looked great. If |
see it's worth, | promise to make an extension to this tutorial use (if someone does not do it
before me;).

+ 280 Assembly Meter: Grand plug Nestor Sancho, which determines the number of clock
cycles that instructions consume we select from the publisher, and the size thereof
bytecodes. In order for this plugin to work, you will have to make a small adjustment:

or We open the command console with Ctrl + Shift + P '
or select Open Configuration Preferences (JSON You preferences
Open Settings JSON).

or At the entrance z80-asm_meter-languagelds add, "Asm-collection”

Lin.4, Col. 31 (25 seleccionadal Espacios 4 UTF-8 CRLF

B 2 cxcribe aqui para buscar - NPy

Now, whenever we select one or more lines of code, the status bar will show the size
in bytes, the number of clock cycles that consume and (or) opcodes of the selected

operations.

Lin 21, Cal 1(631 selecdonada) Espadiond UTF-8 CRIF Asmmblerfle @ 0

[l © Escibe aqui para buscar

Step 2 - Installing the plugin Z80 Debugger

Although this plugin can also be installed from the installation screen extensions, if you seek there
you will find the v.0.9.2 version, and unfortunately, this version contains a bug that causes many
problems during debugging, so you'll have to install the v.0.9.3-2 beta facilitated my own Thomas
Busse (and which you will find in the same zip where is this document) having a slightly different

installation process.

The first step is to decompress the file z80-debug-0.9.3-2.vsix on a working folder. Now from VS
Code, we will go to the "View" menu and then select the option Command Palette.

~ HABILITADO
ASM C

* RECOMENDADO

> DESHABILITADO

In doing so, a window will open where we find " Extensions: Install from file VSIX ". Now
select the file z80-debug-0.9.3-2.vsix,

We accept and see how our plugin is installed perfectly. We are already ending.

Step 3 - Install node.js and assembler SUASMPLUS
The last two tools you have to install are the node.js and SIASMPLUS. For the first, simply run the
file node-v12.13.1-x64.msi we will have downloaded, run it and install with default options.

SJASMPLUS installation is even simpler. After downloading the file sjasmplus-
1.14.3.win.zip of the address, just have to unpack to the directory ye (in my case d: \ Spectrum \
tools \ sjasmplus-1.14.3.win) and add to the path of the directory system as explained during the

passage of the MinGW installation.

Made this last step, we can open our VS Code and prepare to start debugging. 'Let's mess !!

6. Creating our integrated IDE to debug

6.1 - Open the folder with our sample program

To illustrate debugging with our new IDE, I'll use a couple of sample programs included in the

course Compiler soft: One shows a complete charset and another painting a map of a level of

sokoban program. You can find the source code (and files tasks.json and launch.json) in the file Ejemplos.rar
that Annex to this tutorial.

A decompressing the file, find the following content:

» LIBSprites.asm: Library routines for handling sprites.

» LIBScr.asm: Library routines for handling screen.

» LIBCharset.asm: Library routines for handling charsets.

* Ejemplo_Charset.asm: File with the main routine of the first example

* Ejemplo_charset.list and .labels: generated during assembly and necessary for debugging

* Ejemplo_mapa_tiles.asm: File with the main routine of the second example

* Ejemplo_mapa_tiles.list and .labels: generated during assembly and necessary for
debugging

» folder .vscode It is containing files tasks.json and launch.json, necessary to launch the
assembly from VS and begin debugging Code respectively.

Unzip the zip file in a working folder and start the VS Code. Ideally, create a new workspace (option File
are listed \ Save Workspace as ...) and include in the same folder where you have downloaded the
code from the option

\ File add folder to the workspace. If we have done well, we will see a screen similar to this:

LinBY,Col.1 Espacios:4 UTF-8 CRIF Assembl

Y

In the bar we have left, mainly we use two options:

« Explorer (first icon from the top) to browse files.

+ Debug and run (icon of the "bug") to launch debugging

6.2 - Files tasks.json and launch.json

In all our projects, we have a directory called. vscode hanging from the root directory where we have
two very important files: the tasks.json and the

launch.json. While you can create by other means, my advice is that you have a master copy of this
directory and for each project, the modifiquéis files and copy them as appropriate, since it is the most
comfortable option.

Let's talk now about these files, what they are and how they are used.
FILE TASKS.JSON

Through this file, we can define commands or tasks that can be launched from VS Code. In our

case, we will create two tasks:

+ One that will invoke the sjasmplus to join our code and generate files. Ist and . labels you
need the debugger for debugging step by step.

* Another ZEsarUX to call before launching debugging. For this second case, we will create
a file called zesarux.bat to be positioned in the directory where is ZEsarUX and run. In my
case, this file contains the following commands:

d: cd

\

zesarux cd cd cd
src spectrum

exit zesarux

Although we can define more tasks, our file input tasks.json have the following structure:

Ejem
x 1} tasksjson
\ EJERCICIOS (AREA DE TRABAJO)

Lin.49,Col 14 Espacios4 UTF-8 LF JSONwithComments & 0

A - -

Aschiva Editar

Lin 49, Col 14 Espacios:4 UTF-8 LF ISON with Comments @ 0

Let's see the main tags this file:

« Label: Contain the name you will see the task if we try to run it from the option terminal
\ perform task ...
+ type: Here we indicate that the task will run on a Shell

+ Command: Name of the command that will launch from Shell, in our case, sjasmplus.

+ args: contain a list of different parameters to be passed to the command to be executed
from the shell. In our case will be the name of the file. list generate (our main file without its
extension, adding
. list), assembile the file and the file name tags to generate (again, the name of our main file
without adding extension
.labels):

"--Lst = $ {fileBasenameNoExtension} .list" ,

"$ {FileBasename}" ,

"--Sym = §$ {fileBasenameNoExtension} .labels"

+ The remaining tags are standard. Including highlighting group, where we will establish our
task is a task of compiling and also be the default task, to launch pressing b Shift + Ctrl +

In the tasks file shown in the image, we create the two tasks: one to invoke the assembler will
run b Shift + Ctrl + and another to call ZEsarUX. To launch it, we will assign a key
combination: ctrl + z

* From the menu View \ Command Palette ... select Open keyboard shortcuts
(JSON)

* Add the code shown in the image and recorded

chivo Editsr Seleccién Ver I Depurar Temminal Ayuds

Definir enlace de toctado (Ctrl K Crrl 1K)

UnBCol2 Especos? UTFE IF JSONwihCommens @ 0O

6.2 - Assembly of the ASM code SUIASMPLUS
To see that all is well defined, since the browser will select the file ejemplo_mapa_tiles.asm and
pressing the combination of keys indicated, launch assembly whose result will see in the debug

console:

(DM HETGHT) A

> Executing task: sjasmplus --lst=Ejem s.list Ejemplo_mapa_tiles. asm --sym=|

Lin.11,Col. 1 Espacios:? UTF-8 CRIF Assembl

-
- Gl

For you to come to the world PASMO, you step needed some syntax changes between PASMO
and sjasmplus you have to do in your program if you will not have a bunch of assembly errors:

+ All tags should begin in the first column, leaving no space because otherwise be

considered directives or instructions, resulting in error.
« Allinstructions or directives must leave the least space not to be considered labels.

e Our program will start with the directive DEVICE indicating the type of machine that will
generate the SNA file (ZXSPECTRUM48, ZXSPECTRUM128, etc.)

« Will have to define a label for the input routine, which then pass to the SNA it generates
directive file use to debug.

« Definition battery life: although | have not deep enough, seems to be defined zones start
and end of the stack. For this you need to add the following code:

STACK_SIZE : equ 10

stack_bottom :
defs STACK_SIZE *two , 0
stack_top : DEFB 0

In addition to making the next load in SP to the start of the main routine:

sp , stack_top

6.3 - Launching a debugging session
Well, the great moment has come: let's debug the first example. For it:

¢ we will open Ejemplo_charset.asm
* Assemble it by pressing CTRL + SHIFT + b
¢ we started with ZEsarUX ctrl + z

* Press F5 to launch debugging

6. Introduction to debug

Although the tool allows Advanced Options debugging (conditional breakpoints, inspecting areas of
specific memory, etc.), it has not yet had time to delve into them and little | can tell you in this
regard, so you'll have to research a little documentation mentioned at the beginning of the document
and try, try and try.

In any case, if | can give a small outline of what basic tools we offer the IDE to debug:

' VARIABLES

 INSPECCION

* PILADE LLAMADAS

(nTn_

& ®0A0 R1 b Eemplo Charset Eercicios) < 1byie @4 EI3Fi Lin.11,Col.1 Espadosi4 UTF-§ CRLF Assembley

Esp

[W © escribe aqui para buscar (o] & a0 b

Areas | checked are:

+ A -Command Bar: It offers the usual options for debugging, as they are to continue, step
by step procedures, step by step instructions, out of the routine, back in the running,
reverse, restart and finish debugging. In the code window (labeled B) are marked in green
executed instructions.

* B - Area code: Shows the code that we are running. Putting the cursor on a variable or
label, we can see its value and content of the memory area to which it points. By pressing
the right button, we can see and browse the definition of a routine or variable references in
the code has run to that position, etc.

 INSPECCION

~ PILA DE LLAMADAS
MATH

~ PUNTOS DE INTERRUPOIGN

@0A0 M1 P Femplo Charset [Gercicios) Cirl+Mayi Tol1 Especosi4 UTF8 CRIF Assembler fle
O Escribe aqui para buscar n S r}r 7

+ C -Zone variables: View and modify the values of the records, shadow, see the
disassembled code, memory areas or content of the stack.

dita

 VARIABLES

 INSPECCION

 PILA DELLAMADAS
MATH

 PUNTOS DE INTERRUPCION

@040 R1 P Hemplo Charset fercicios) Epaiosd UTF8 CRUF Asembierfe @ 01

£ Escribe aqui para buscar

D - Inspection Zone: Lets you add variables to be inspected during execution of the
program code

Archivo Editar Seleci

~ VARIABLES

INSPECCION

7 PILA DE LLAMADAS

MATN

PUNTOS DE INTERRUPCION

®@0A0 R1 D Eemplo Charset (fjercicos) > 1yte § 11 FCS:PUSHBC

Hll © Escribe aqui para buscar

E - Call Stack: It indicates that point we find exactly the execution.

F - Inspection Zone memory: We can view (and change) the values contained in
specific memory areas. By default displays the areas targeted by HL, DE, BC, IX and IY
registers. However, if from the Debug Console (zone H) write -MD address bytes (-MD eg
0x8000 10), it will show a new window with that area of memory and the number of bytes
marked.

VARIABLES

INSPECCION

/ PILA DE LLAMADAS

MATN

PUNTOS DE INTERRUPCION

®0A0 R1 D Bemplo Charset (fercicios)

Fll © Escribe aqui para buscar

G - Breakpoints: It allows you to add breakpoints. We can also do this by double clicking
on the left of any line of code.

*+ H-Debug Console: From here we can launch specific commands during debugging. |
recommend launching a - help to see a list of available commands.

* | -Debug Menu: It lets you access the main debugging options.

7. Now what?

Well, at this point and will only put you to program is like madmen in ASM and to discover all

the possibilities offered by the combination of these tools.

For my part, | will continue researching / studying the following aspects:

* Syntax and possibilities sjasmplus

* And additional configuration possibilities ZEsarUX

* Debugging capabilities offered by the plugin Z80 Debug
* Using Test Unit Z80 in my programs

As you progress along those lines, | will publish updates to the tutorial with everything that you
discover.

7. Acknowledgments

Finally, | have to finish with the public thanks to several people who have been helping me in
every problem | have encountered along the way and who have put their bit to have completed
this tutorial.

Specifically, | want to mention especially:

* César Hernandez, for making an emulator like ZEsarUX, which offers a world of
possibilities, but mostly because of its proximity, cordiality and interest in helping me
at every step. THANK YOU !ll Namesake

+ Thomas Busse, for giving us such a brutal plugin that squeezes all the possiblities
ZEsarUX and your kindness when answering my questions, issues, problems and, above
all, for giving a specific version for Windows that corrected all the bugs | did not allow
debug as | was looking for.

* Nestor Sancho, for their sympathy and quick help to run your plugin without colliding
with other plugins I've had to install.

* My fellow groups "Assembler ZX Spectrum" and "Retrodevs".
Your closeness, help, comments and others are key to progress in my dream "tame the

beast"

And | will end with this tutorial serve for a single person to use the development environment

and make the most, the effort has cost me

learn (and later write) everything you need to mount it will have been worthwhile.

| would like, if you use this tutorial, | contactéis me by mail or telegram (my Nick is @Metaprime)
to share questions, problems, progress and others.

See you on the forums!

César Wagener Moriana in Seville December 14, 2019.

Randomize usr 0

