
The SamRam

Source: file "TECHINFO.DOC" of Z80 emulator package. Comments by Yarek.

    For our own Spectrums Johan Muizelaar and I built a piece of hardware

    we called the SamRam (which has nothing to do with the SAM Coupe, by

    the way!).  It contains a monitor program and software to make

    snapshots of programs.  It's still very useful and I still use it a

    lot.  An explanation of its functions is to be found in chapter 3.

(...)

3.  THE SAMRAM

3.1  Basic extensions

    The SamRam is a hardware device Johan and I built for our Spectrums. It

    consists of a 32K static RAM chip which contains a modified copy of the

    normal Basic ROM and a number of other useful routines, like a monitor

    and snapshot software.  You can compare it to a Multiface I interface,

    but it's more versatile.  Another useful feature was a simple hardware

    switch which allowed use of the shadow 32K Ram, present at 8000-FFFF in

    most Spectrums, but hardly ever actually used.

    For more details on the low-level hardware features of the SamRam read

    chapter 5.  In this chapter I'll explain the software features of the

    SamRam software, somewhat bombastically called the 'SamRam 32 Software

    System' or the 'Sam Operating System'.  By the way, all similarity

    between existing computers is in fact purely coincidental and has in no

    way been intended.  Really!

    The SamRam offers a few new Basic commands, and a lot of useful

    routines that are activated by an NMI, i.e.  by pressing F5.  First

    I'll discuss the Basic extension.

    Select the SamRam by starting the emulator with the -s switch, or by

    selecting it from the F9 menu.  Normal Basic functions as usual; the

    character set is different from the original one.  There are four new

    commands: *RS, *MOVE, *SAVE and *SPECTRUM, and two new functions, DEC

    and HEX, which have replaced ASN and ACS.  DEC takes a string argument

    containing a hexadecimal number, and returns the decimal value of it.

    HEX is the inverse of the DEC function, and yields a four-character

    string.

    *RS sends its arguments directly to the RS232 channel.  You don't have

    to open a "b" or "t" channel first.  You're right, it's of limited use.

    Example: *RS 13,10

    *MOVE is useful: it moves a block of memory to another place.  Example:

    *MOVE 50000,16384,6912 moves a screen-sized block from 50000 to the

    start of the screen memory.

    *SAVE works like *MOVE, except that it activates the shadow SamRam ROM

    before moving.  I used this command to update the shadow ROM, but on

    the emulator you can use it to move the shadow ROM to a convenient

    place in Ram where you can take a look at it, for instance by executing

    *SAVE 0,32768,16384.

    *SPECTRUM resets the SamRam Spectrum to a normal one.  You lose all

    data in memory.  By resetting the emulator by pressing ALT-F5, the

    SamRam is activated again.  Not very useful either.

    Then there's the Ramdisk, which is, like the Spectrum 128 ramdisk,

    accessed via the SAVE!, LOAD!, CAT!, ERASE! and FORMAT!.  The syntax is

    straightforward.  FORMAT! and CAT! need no parameters; ERASE! only

    needs a name.  If a file is not found, the SamRam will respond with a

    5-End of File error.  The Ramdisk has a capacity of 25K.

3.2  The NMI software

    Select the SamRam (F9-3), and press F5.  A menu with eight icons pops

    up.  You can select each icon by moving the arrow to it (using the

    cursor keys or the Kempston joystick), and pressing '0' or fire.  The

    icons can also be selected by pressing the appropriate letter key.

    The eight icons are two arrows with N and E within them, a magnifying

    glass with the letters 'mc' in it (activated by pressing D), two

    screens (identified by 1 and 2), a printer (P), a cassette (S) and a

    box saying 'overig'.  The 'D' activates the monitor or disassembler;

    read section 3.3 for information on this program.

Kempston Mouse https://8bit.yarek.pl/upgrade/zx.samram/samram.html

1 de 4 05/01/2020 14:33



    Pressing N or E returns you to the Spectrum.  If you pressed N, the

    normal Spectrum rom will be selected when the NMI software returns; if

    you press E, the Rom with the Basic extensions will be selected.  Some

    games may crash if they see a different rom than the standard Spectrum

    one.

    Pressing 1 selects the tiny screen editor.  You can move a '+' shaped

    cursor about the screen using the cursor keys.  The following commands

    are available:

        H: Get the current ATTR colour from the screen at the cursor's

           current position, and store it in memory.  This colour will be

           used by the next command:

        Z: Put the colour on the screen

        G: Get a character from the screen

        P: Put the character on the screen

        R: Remove all screen data that is invisible by the ATTR colour

        L: Take a look at the bitmap below the ATTR colour codes

        T: Return to the main menu.  You can also return by pressing

           EDIT, or ESC in the emulator.

        B: Change border colour

        V: Clear the whole screen

    If you press 0, you can edit the current 8x8 character block at pixel

    level.  Again you control the cursor with the cursor keys.  Now 0

    toggles a pixel.  In this mode there are two commands: C clears the

    whole block, and I inverts it.  Pressing EDIT (ESC) returns you to the

    big screen again.

    The SamRam has two screen buffers.  Buffer 1 is used to hold the screen

    which was visible when you pressed NMI, to be able to restore it when

    returning.  This is the screen you edit with '1'.  The second screen

    buffer can be used to hold a screen for some time; it is not touched by

    the NMI software directly, and will not even be destroyed by a Reset.

    If you press '2', a menu appears with four Dutch entries:

        1: Scherm 1 opslaan        (Store screen 1 into buffer 2)

        2: Scherm 2 veranderen     (Edit screen 2)

        3: Schermen verwisselen    (Swap screens)

        4: Scherm 2 weghalen       (Remove screen 2)

    These four functions are rather obvious, I believe.

    Pressing 'P' pops up the printer menu.  The screendump program is

    written specifically for my printer, a Star SG-10.  It will probably

    work on some other printers, but not on most.  The output is sent to

    the RS232 channel, so you have to redirect it to an LPT output.

    Skipping the most interesting, 'S', for a moment, let's first discuss

    the final menu, 'O' for 'Overig', Dutch for miscellaneous.  There are

    five menu options, of which three are not useful.  The first gives a

    directory of the cartridge currently in Microdrive 1.  The last, 'E',

    returns you to Basic if this is anywhere possible: it resets some

    crucial system variables and generates a Break into Program.  You can

    use this for instance to break in a BEEP, or crack a not-so-very-well-

    protected program.  The three other options select normal or speed-

    save, and store the current setting in CMOS Ram.  Speed-save won't work

    properly on the emulator, because the speed-save routine toggles the

    upper 32K ram bank regularly, and this takes too much time on the

    emulator.  The setting is not important if you use the internal save

    routine (which will be used by default, unless you select Real Mode).

    Finally, the 'S' option.  This option allows you to save a snapshot to

    tape or microdrive.  I used it a lot on my real Spectrum, and it works

    just as well on the emulator.  It is very useful is you want to load a

    .Z80 program back into a real Spectrum again.  There are three

    'switches' you can toggle.  The active choice is indicated by a bright

    green box, inactive boxes are non-bright.  You have to use EGA or VGA

    to be able to see it...  The first switch lets you select whether the

    SamRam rom should be active if the program loads or not.  This is only

    meaningful is you load it back in a SamRam again.  Usually I want the

    SamRam rom to be active because I like the character set better.  The

    second switch indicates whether the SamRam should save a 'loading

    screen', which it takes from screen buffer 2.  If screen buffer 2

    contains a screen, this switch will by default be on.  Finally, the

    last switch lets you select the output media, tape or cartridge.

    If the program is loaded back into the SamRam, the only bytes that have

    been corrupted are four bytes down on the stack; this will virtually

    never be any problem.  If the program is loaded back to a normal

    Spectrum, these four bytes will also be corrupted, and the bottom two

    pixel lines of the screen will be filled with data.  (This is

    considerably less than any other snapshotter I've seen: for instance

    the Multiface I uses more than 35% of the screen!)

    The Microdrive BASIC loader needs code in the SamRam rom to start the

    program (the RANDOMIZE USR 43 calls it).  It won't be very difficult to

    write a standard BASIC loader that doesn't need this code, but I don't

    think many people desperately need it...  Anyway, using the Multiface

    128 you can write a compressed snapshot to cartridge which doesn't need

    the Multiface.

Kempston Mouse https://8bit.yarek.pl/upgrade/zx.samram/samram.html

2 de 4 05/01/2020 14:33



3.3  The built-in monitor

    This is a really very convenient part of the emulator, and I use it a

    lot.  It is very MONS-like in its commands and visual appearance.  It

    cannot single-step however, but on the positive side it has some

    features MONS hasn't.  It is a part of the SamRam, and cannot therefore

    be used with Spectrum 128 programs.  If you want to take a look at a

    Spectrum 128 program, press F10, then change the hardware to SamRam

    without resetting, and finally generate an NMI in the Extra Functions

    menu.  You won't probably be able to continue to run the program, but

    at least you're able to see what it was doing.

    Press F5 for NMI, and D to enter the monitor/disassembler.  The first

    eight lines are the first eight instructions, starting at the Memory

    Pointer, from here on abbreviated by MP.  At first, MP is zero.  The

    disassembler knows all official instructions, and the SLL instruction.

    If another inofficial instruction (i.e.  starting with DD, FD or ED) is

    encountered, the first byte is displayed on a blank line.  The four

    lines below these display the value of PC and SP, the first nine words

    on the stack (including AF and the program counter, which have been

    pushed during NMI), and three MP-memories.  These can be used for

    temporary storage of the MP, for instance when you take a look at the

    body of a CALL, and want to return to the main procedure later.

    The bottom part of the screen displays 24 bytes around the memory

    pointer.

    Commands are one letter long; no ENTER needs to be given.  If one or

    more operands are needed, a colon will appear.  By default the monitor

    accepts hexadecimal input.  A leading $ denotes that the number is to

    be regarded as decimal.  If you give the # command, the default will

    toggle to decimal, and you need to explicitly put a # in front of a

    number which is to be interpreted as a hex number.  Also, after the #

    command all addresses on screen will be decimal.  A single character

    preceded by the " symbol evaluates to its ASCII code, and the single

    character M will evaluate to the current value of the memory pointer.

    The monitor commands:

        Q: Decrease the memory pointer by one.  You effectively shift one

           byte up.

        A: Increase the memory pointer, shifting one byte down.

        ENTER: Shift one instruction down: the memory pointer is

           increased by the length of first instruction displayed on

           screen.

        M: Change the value of the memory pointer.  For instance, M:M

           won't change it.

        P: Put.  The word operand supplied will be stored in the first MP

           memory, and the others will shift on place to the right.

           Usually, you'll want to store the memory pointer by P:M

        G: Get.  Typing G:1, G:2 or G:3 moves the value of one of the MP

           memories to the MP.

        B: Byte.  This command needs a byte operand; it will be poked

           into memory, and the memory pointer will move one up.

        I: Insert.  The same as B, except that you can poke more than one

           byte.  It continues to ask for bytes to poke until you type

           Enter on a blank line.

        #: Toggles the default number base between hexadecimal and

           decimal.

        F: Find.  You can enter up to ten bytes, which will be searched

           through memory.  Searching will stop at address 0, because

           since the search string is stored in shadow Ram, searching

           would otherwise not always terminate.  Typing Enter on a blank

           line starts the search.  Byte operands are entered as usual,

           but:

           - If a number bigger than 256 decimal is entered, it is

             treated as a word in the standard LSB/MSB format.  So, 1234

             will search for 34,12 hex in that order.  Note that 0012

             will search for 12, not 12,00.

           - A line starting with " decodes into the string of characters

             (up to ten) behind it.  Normally this would only be the

             first character.  So instead of typing "M "Y "N "A "M "E

             (space=enter here) you type "MYNAME.  Note that any

             terminating " will also be searched for!

           - An x is treated as a wildcard.  So if you search for CD x 80

             any call to a subroutine in the block 8000-80FF is a hit.

             If you search for x 8000, you'll see every one-byte

             instruction that has the address 8000 as operand.

        N: Continues the search started by F from the current MP.

        $: Displays one page of disassembly on screen.  In this mode,

           the following commands are possible:

           $: Back to the main screen

           7: [Shift 7 also works, cursor up]: Go to the previous page.

              The monitor stores the addresses of the previous eight

              pages only.

           Q: Go back one byte (decrease MP by one)

           A: Go one byte forward (increase MP by one)

           Z: Dump this screen to the printer, in ASCII format.  Redirect

Kempston Mouse https://8bit.yarek.pl/upgrade/zx.samram/samram.html

3 de 4 05/01/2020 14:33



              the RS232 output to a file, and run CONVERT on it to convert

              the CR's into CR/LF's before printing (or tell your printer

              to do the conversion).

           Every other key displays the next page of disassembly.

        K: List.  The same mode as with $ is entered, but instead of a

           disassembly the bytes with their ASCII characters are

           displayed.  Useful to look for text.

        C: Clear.  Fills blocks of memory with a specified value.  The

           monitor prompts with 'First', 'Last' and 'With'.  The 'Last'

           address is inclusive!

        D: Dump.  Prompts with 'First' and 'Last', and dumps a

           disassembly of the block between these addresses to the

           printer.  See remark at $-Z.  The 'Last' address is again

           inclusive.

        R: Registers.  If you press Enter after R, an overview of the

           registers contents is displayed.  If you type one of A,B,C,D,

           E,H,L,A',B',C',D',E',H',L',I,R,AF,BC,DE,HL,AF',BC',DE',HL',

           IX,IY,SP or PC, you can change the value of it.  Changing the

           value of SP also changes the PC and AF values by the way.  You

           cannot change the Interrupt mode or IFF.

        V: Verplaats.  (Move).  Prompts with 'From', 'To' and 'Length'.

           Obvious.

        S: Save.  Enter the start of the block you wish to save first.

           The monitor then prompts with 'Length'.  The block is saved

           without a header, as a normal data block (A, the flagbyte, is

           0FF)

        L: Load.  Loads a block of data from tape, at the specified

           address.  Normal data blocks, headers and blocks with non-

           standard flag bytes can be loaded.  The first byte in memory

           will contain the flag byte.  If the checksum isn't 0 after

           loading, indicating a tape error, you'll hear a beep.

        H: Header read.  Loads headers and displays the contents on

           screen.

(...)

5.  TECHNICAL INFORMATION

5.6  The SamRam

    The SamRam contains a 32K static CMOS Ram chip, (two 16kB banks 

    placed under the ZXROM - Yarek)  and some I/O logic for

    port 31.  If this port is read, it returns the position of the

    joystick, as a normal Kempston joystickinterface would.  If written to,

    the port controls a programmable latch chip (the 74LS259) which

    contains 8 latches:

Bit 7 6 5 4 3 2 1 0

WRITE address bit

    The address selects on of the eight latches; bit 0 is the new state of

    the latch.  The 16 different possibilities are collected in the diagram

    below:

OUT 31, Latch Result

0
0

Switch on write protect of CMOS RAM

1 Writes to CMOS RAM allowed

2
1

Turn on CMOS RAM (see also 6/7)

3 Turn off CMOS RAM (standard Spec. ROM)

4
2

-

5 Ignore all OUT's to 31 hereafter

6
3

Select CMOS bank 0 (Basic ROM)

7 Select CMOS bank 1 (Monitor,...)

8
4

Select interface 1

9 Turn off IF 1 (IF1 rom won't be paged)

10
5

Select 32K ram bank 0 (32768-65535)

11 Select 32K ram bank 1 (32768-65535)

12
6

Turn off beeper

13 Turn on beeper

14
7

-

15 -

    At reset, all latches are 0.  If an OUT 31,5 is issued, only a reset

    will give you control over the latches again.  The write protect latch

    is not emulated; you're never able to write the emulated CMOS ram in

    the emulator.  Latch 4 pulls up the M1 output at the expansion port of

    the Spectrum.  The Interface I won't page its ROM anymore then.

Kempston Mouse https://8bit.yarek.pl/upgrade/zx.samram/samram.html

4 de 4 05/01/2020 14:33


