
JC64dis
by

Ice Team

1

1 Introduction
JC64dis is an iterative program designed to disassemble 8-bit machine code1. It specifically
targets the MOS M6502, Zilog Z80 and Intel 8048 processors.

Notably, it directly supports the following machines:

• Commodore 64 (C64)

• Commodore 1282 (C128)

• Commodore VIC 20

• Commodore Plus4

• Commodore 1541 disk drive

• Atari

• Odyssey/Videopack

1At the actual 2.9 version, the program has over 101.000 lines of code and has an extimated COCOMO cost of
$1.369.000 with 25 person/year of realization effort.

2Both M6502 and Z80 variants.

2

The program can read the following file formats:

• PRG: Standard programs containing machine code and the starting address for execution.

• SID: PSID/RSID image format for C64 music programs.

• MUS: Musical data related to the SIDPLAYER.

• MPR: Proprietary format for embedding multiple PRG files to be fully disassembled.

• CRT: Format containing cartridge dumps for C64 expansion cartridges (specific page
analysis is necessary due to memory blocks).

• VSF: Snapshot of the VICE emulator containing C64 memory and state.

• AY: AY music program image format for ZX Spectrum, Amstrad CPC, and Atari ST,
containing the Texas Instruments AY chip.

• NSF: Music program image format for the NES system.

• SAP: Music program image format for Atari using the POKEY chip.

Currently, JC64dis can directly generate code for the following assemblers3:

• M6502:
– Dasm
– TMPx
– CA65
– Acme
– Kick Assembler
– 64 Tass
– Macro Assembler (AS)

• Z80:
– Glass

• I8048:
– Macro Assembler (AS)

Given its extensive configurability, JC64dis provides over 330 different configuration options
that allow fine-tuning of its behavior. For a detailed understanding of each parameter’s meaning,
refer to the program’s built-in help.

In this manual, we will emphasize its underlying logic and functionality.

3In this manual almost all code example provided are shown in Dasm format.

3

2 History
JC64dis was born in 2003 as a simple command-line utility associated with the JC64 emulator
written in Java by the Ice Team.

Initially, its purpose was to disassemble the C64’s Kernal in order to verify the correctness of
the emulator itself, as the first code executed at startup resides in the Kernal.

From the outset, this tool allowed for automatic commenting of memory locations for C64
instructions, making it easier to understand the machine code. Thanks to JC64dis, several music
players were disassembled and later featured in the SIDin magazine, produced by the Ice Team.

The experience gained during this phase led to a complete overhaul of the program, with the
goal of reducing the time required to analyze and fully understand machine code by a factor of
10. In 2020, version 0.7 of the program was released, marking the first version with a graphical
interface.

The program distinguishes itself in the following three work areas:

• 64K Memory Cells (with corresponding states) Preview of Disassembled Code, presented
in a mixed format of hexadecimal data and assembler instructions.

• Source Code of the Disassembled Program, available in one of the formats supported by
assemblers.

• The program’s logic revolves around having a “dumb” disassembler to which we can provide
step-by-step information about each memory cell. This ultimately results in a thoroughly
commented source code that can be reassembled to obtain the original machine code.

JC64dis main screen

4

3 Memory
Each individual memory cell visible in the left table of the program internally contains several
fields, some of which are later synthesized as symbols or flags in the columns of the same table.

The fields present (the meaning of many of which will be discussed in detail below) are as
follows:

• Address: The address from 0 to 65535 associated with the memory cell.

• Value: The value that the memory cell holds, derived from the loaded file or operations
(such as relocation) performed on other cells.

• Automatic Comment: Automatically generated comment for the instruction whose last
operand is this cell.

• Manual Comment: A comment manually written by the user for this cell (this com-
ment takes priority over the automatic one, which is hidden in the presence of manual
comments).

• Automatic Comment Block: A multi-line comment automatically generated by the
program and associated with this memory cell.

• Manual Comment Block: A multi-line comment manually inserted by the user using
the program (in this case, the manual block takes priority over the automatic one).

• Automatic Label: A label automatically associated by the program with this memory
cell.

• Manual Label: A label manually created by the user of the program (this label takes
priority over any automatically generated one).

• Internal State: Indicates whether the cell is part of the memory area associated with
the program for disassembly.

• Code State: Indicates whether the cell should be evaluated as machine code.

• Data State: Indicates whether the cell should be evaluated as data area.

• Trash State: Indicates whether the cell contains data that should not be disassembled
by the program.

• Constant Index: Indicates which of the 20 constant value tables to use for providing a
non-numeric representation for this cell.

• Related Value: Indicates which memory cell this one is directly linked to.

• Type of Relationship: Specifies the type of relationship this cell has with the related
one.

• Base Relocation Address: Represents the starting base for relocating this memory cell.

• Destination Relocation Address: Indicates the destination for relocating this memory
cell.

• Data Type: Specifies how to represent the data contained in this memory cell.

• BASIC Type: For data-type cells, further specifies the type of BASIC to which this
value belongs.

5

4 Data Types
The choice of data type for a memory cell is a fundamental consideration when using the pro-
gram. By default, every memory area associated with loaded data is displayed as “code” type.
Therefore, the primary task is to mark areas as “data” (or, more rarely, as “garbage”)4.

Visually, an unassociated memory area (and thus interpreted as “code”) is marked in gray:

An area associated as “code” is instead marked in green:

An area associated as “data” is marked in cyan:

Finally5, an area associated as “garbage” is marked in red:

The choice made affects what is displayed both in the preview and in the area designated for
the data source:

• Code Area: Displays the disassembled bytes that are marked.

• Data Area: Shows the data in one of the chosen formats, with the default set to “byte”
type.

• Garbage Area: The entire data area is ignored and not used for creating the source6.

4However, labeling an area as “code” can be useful to highlight parts that we have analyzed and deemed correct
within this category.

5The memory cells outside the program bytes are highlighted in white
6It’s worth noting that labels created in this area are still utilized by the program.

6

5 Data Areas
Data areas allow further characterization into various subtypes, making the source code more
readable and manageable. Since not all assemblers provide support for certain data types,
JC64dis addresses this issue by automatically creating appropriate macros to compensate for
the lack, thus standardizing their treatment.

The following formats are indeed anticipated:

• Hexadecimal Byte: Undoubtedly the most commonly used format, which represents a
sequence of bytes encoded in hexadecimal using the prefix $.

• Decimal Byte: Represents a sequence of bytes in numerical decimal format.

• Binary Byte: Represents a sequence of bytes in binary format, using the prefix %.

• Character Byte: Represents a sequence of bytes in character format7, enclosed in single
quotes.

• Word: A sequence of two bytes in little-endian8 format that is represented as a 16-bit
hexadecimal value.

• Inverted Word: A sequence of two bytes in big-endian9 format that is represented as a
16-bit hexadecimal value.

7Depending on the assembler, any characters not convertible to ASCII are forced to be represented as hexadecimal
bytes.

8In little-endian format, the first byte is the least significant, while the second byte is the most significant.
9In big-endian format, the first byte is the most significant, while the second byte is the least significant.

7

• Tri-byte: A sequence of 3 bytes in little-endian format that is displayed as a 24-bit.
hexadecimal value.

• Long: A sequence of 4 bytes in little-endian format that is shown as a 32-bit hexadecimal
value.

• Address: An address10 (in little-endian format) is a word for which we provide the
compiler with the knowledge that we will use it to store memory locations (pointers).
In any case, we can create addresses as either two bytes or a word. There is no difference
in program execution, but the use of the address attribute is merely a representation
convenience employed by certain compilers.

• Stack Address: It is a word decreased by 1. It is used to place the address that must be
executed after a subroutine return instruction (RTS).

• Monochromatic Sprite Definition: A sequence of 64 bytes, logically grouped into
blocks of 3x21 bytes11, in which bit 0 represents transparency, while bit 1 corresponds to
the sprite’s color.

• Multicolored Sprite Definition: A sequence of 64 bytes, grouped into blocks of 3x21
bytes. In this case, the horizontal bits are taken in pairs to associate:

– 00 with transparency
– 01 with common color 1
– 10 with common color 2
– 11 with the sprite’s color

10The method of inserting addresses into JC64dis will be discussed further.
11The last byte is ignored but serves to achieve a multiple-of-2 size.

8

• Text: A sequence of consecutive bytes treated as text, enclosed in quotation marks where
characters can be represented as ASCII.

• Text with a specified character count: it is text of predetermined length determined
by the first byte in the group that makes up the text.

• Text terminated with zero: it is text whose length ends when a zero (0) is encountered.

• Text terminated with a high bit of 1: text whose length ends as soon as the most
significant bit is 1.

• Left-shifted text: text where the least significant bit is always 0, because the character
code is shifted to the left. Few assemblers support this mode.

• Text converted to screen code: text containing screen characters from the C64.

• Text converted to PetAscii characters: text containing PetAscii characters from the
C64.

Remember that the way various data types are grouped on a single line to generate the source
code is configurable in the options.

9

6 Sub-data area
For byte data types, an additional attribute12 can be associated to declare the type of BASIC
program represented by those sequences of values, drawing from this list:

• Basic v2.0 (C64/VIC20/PET)

• Basic v3.5 (C16)

• Basic v4.0 (PET/CBM2)

• Basic v7.0 (C128)

• Basic v2.0 with Simons’ Basic (C64)

• Basic v2.0 with @Basic (C64)

• Basic v2.0 with Speech Basic v2.7 (C64)

• Basic v2.0 with Final Cartridge III (C64)

• Basic v2.0 with Ultrabasic-64 (C64)

• Basic v2.0 with Graphics Basic (C64)

• Basic v2.0 with WS Basic (C64)

• Basic v2.0 with Pegasus Basic v4.0 (C64)

• Basic v2.0 with Xbasic (C64)

• Basic v2.0 with Drago Basic v2.2 (C64)

• Basic v2.0 with REU-Basic (C64)

• Basic v2.0 with Basic Lightning (C64)

• Basic v2.0 with Magic Basic (C64)

• Basic v2.0 with Blarg (C64)

• Basic v2.0 with WS Basic final (C64)

• Basic v2.0 with Game Basic (C64)

• Basic v2.0 with Basex (C64)

• Basic v2.0 with Super Basic (C64)

• Basic v2.0 with Expanded Basic (C64)

• Basic v2.0 with Super Expander Chip (C64)

• Basic v2.0 with Warsaw Basic (C64)

• Basic v2.0 with Supergrafik 64 (C64)

• Basic v2.0 with Kipper Basic (C64)

• Basic v2.0 with Basic on Bails (C64)
12The attribute is used to automatically comment the data area, as will be seen later.

10

• Basic v2.0 with Eve Basic (C64)

• Basic v2.0 with The Tool 64 (C64)

• Basic v2.0 with Super Expander (VIC20)

• Basic v2.0 with Turtle Basic v1.0 (VIC20)

• Basic v2.0 with Easy Basic (VIC20)

• Basic v2.0 with Basic v4.0 extension (VIC20)

• Basic v2.0 with Basic v4.5 extension (VIC20)

• Basic v2.0 with Expanded Basic (VIC20)

• Basic v2.0 with Handy Basic v1.0 (VIC20)

• Basic v8 Walrusoft’ (C128)

A BASIC instruction for the Commodore system is, in fact, formed by these values:

• Memory address (16-bit) in little-endian format of the next BASIC instruction after the
current.

• Line number (16-bit) in little-endian format of this BASIC instruction.

• Sequences of:
– Token of the instruction to be executed (1 or 2 bytes depending on the type of BASIC

and its command)
– parameters of the instruction terminating with a 0 as token.

• A 0 as the next BASIC instruction denotes the end of the program itself.

Some examples of data with BASIC code:

11

7 Comments
Comments inserted both in the code and in the data are essential for understanding the function-
ing of the program being analyzed. Therefore, JC64dis is capable of automatically commenting
certain instructions or memory locations.

For instance, knowing the architecture for which the program was written (a choice made
when creating a new project) allows us to associate a known location with its meaning and add
it as a comment (in the options, you can enable or disable comments for homogeneous memory
address banks):

Of course, in JC64dis, we can manually add comments or suppress an automatic comment if
it is not deemed useful, all to enhance text comprehension:

As evident from the images just above, comments on instructions appear at the end of the
instruction itself, while comments on data locations always appear near where they are inserted:

The only variation, made exclusively to improve the readability of the source code, is that in
the presence of a label and a comment in the first byte, the comment is placed at the label level.

Currently, automatic comments are associated with the following events

• Memory locations known in processor instructions.

• Graphical comment for mono or multi-color sprite data.

• Comment on the data with BASIC code.

• Comment on the frequency of A4 note for a musical frequency table13.

13This will be discussed later.

12

8 Comment block
A comment block is a method for inserting comments across multiple lines. These comments
are placed starting from the first column and, if supported by the compiler14, can be written
within specific separation tags that further enhance the readability of the resulting source code.

Although JC64dis utilizes block management to automatically insert comments into the code,
these comments are not tied to a memory address. Therefore, they always appear at the top of
the source and can be customized or excluded through program options:

Each comment block inserted into a memory cell is manually executed by the user who utilizes
it to document various points in the source code:

However, a comment block can also be used to create spacing within the text, separating
different parts of the code. This action significantly improves readability.

By default, JC64dis adds a line break after each code line where the instruction causes a sudden
flow change, such as after a JMP (Jump), RTS (Return from Subroutine), or RTI (Return from
Interrupt):

The method to activate the separation of program or data flow into two parts is to insert a
space followed by a line break. This will insert an empty line in its place.

14Obviously in the options of each compiler it will be possible to select whether it supports it.

13

In the case of a data sequence, the comment block can be used to alter the normal grouping
of the data itself. For example, if we have an 8-byte grouping and want each line to contain less
bytes, we can simply insert a comment block containing only a line break (without spaces).

There is an additional feature related to block comments worth mentioning: macro expansion
for automatically creating graphical, parametric comments based on data values in the following
cells.

The data relevant to graphics, as we’ve seen in the case of sprite definitions, but also for char-
acters, is organized in rows by columns, and the colors to be used are determined by appropriate
bit combinations.

When analyzing code, being able to visually inspect these objects makes understanding the
program much easier, but manually inserting a graphical comment block becomes impractical.

With macros, we simply specify how the subsequent n x m blocks (distinguishing between
sprites and character definitions), arranged from bottom to top or vice versa, should be repre-
sented graphically.

14

9 Block comment macro
A macro in a block comment has this syntax: [<TYPE#MODE#NxM#DIR>] where
type, mode and dir are the values to insert according to this table:

• [<CHAR#MONO#NxM#UPDN>] Shows a grid of NxM monochromatic chars ar-
ranged in row that goes from up/sx to up/dx and then go below of one line and so on.

• [<CHAR#MONO#NxM#DNUP>] Shows a grid of NxM monochromatic chars ar-
ranged in row that goes from up/sx to dn/sx and then go rigth of one line and so on.

• [<CHAR#MULTI#NxM#UPDN>] Shows a grid of NxM multicolor chars arranged
in row that goes from up/sx to up/dx and then go below of one line and so on.

• [<CHAR#MULTI#NxM#DNUP>] Shows a grid of NxM multicolor chars arranged
in row that goes from up/sx to dn/sx and then go rigth of one line and so on.

• [<SPRITE#MONO#NxM#UPDN>] Shows a grid of NxM monochromatic sprites
arranged in row that goes from up/sx to up/dx and then go below of one line and so on.

• [<SPRITE#MONO#NxM#DNUP>] Shows a grid of NxM monochromatic sprites
arranged in row that goes from up/sx to dn/sx and then go rigth of one line and so on.

• [<SPRITE#MULTI#NxM#UPDN>] Shows a grid of NxM multicolor sprites ar-
ranged in row that goes from up/sx to up/dx and then go below of one line and so on.

• [<SPRITE#MULTI#NxM#DNUP>] Shows a grid of NxM multicolor sprites ar-
ranged in row that goes from up/sx to dn/sx and then go rigth of one line and so on.

As an example, this [<CHAR#MONO#3x2#DNUP>] macro produces this result:

15

10 Labels
A label is the method used in assembly source code to reference a memory location, whether it’s
for code or data, at any point in the program. For this reason, JC64dis automatically creates
labels15 called W followed by their 16-bit hexadecimal address whenever it encounters an
instruction that refers to that memory area.

In the example above, two labels have been defined: W110B, which points to the jump loop,
and W1046, which points to the write instruction.”

Just like comments, labels can also be created manually16. Importantly, this allows for re-
naming (since a manual label takes precedence over an automatically generated label in the
same location) those automatic labels by giving them meaningful names, as dictated by good
programming practices.

An important consideration is that labels are not automatically created for memory areas
external to the program itself (or are in garbage area):

In the example above, $D404 (the address of the C64 sound chip) remains unassigned. This
choice may seem unconventional, but it serves a purpose: since the label is external to the
program area, it can only be assembled if declared as a constant, which is typically done at the
beginning of the program. Therefore, users are allowed to create their own labels for external
areas that become constants.

15However, even though it’s possible to delete an automatically created label, this operation is effective only when
that memory location is no longer actively referenced (which happens when we convert a code area into data,
for example). Otherwise, the label will be recreated during the next disassembly execution.

16In any case, the program does not allow the creation of a duplicate label or potentially similar to those
automatically generated (Wxxx) to prevent ambiguities that could lead to source code compilation errors.

16

11 Relative labels
JC64dis allows you to create a reference to an existing label for a memory location, relative to
the distance (+/-) from that label. This technique is often used in assembler programs when
dealing with a data buffer and referring to various subsequent positions starting from the buffer
itself17:

Even though it is used less frequently, backward references (negative ones) can also be very
useful for keeping the code clean18:

Relative labels are also automatically created by the program when an instruction operates
on a memory address that belongs to an operand of another instruction. This is the only system
for identifying that location19:

17In the example, blockBuffer contains a table of low/high addresses, one for each of the 3 entries. Creating a
separate label for each byte would have significantly cluttered the code.

18In the example, sampleIndex holds values starting from 1. Therefore, referencing backward by one unit ensures
alignment with table speedFromIndex.

19In the example, the byte of the ORA operation is dynamically changed by the program flow.

17

Automatically, the label is always created by referring to the same instruction. However,
manually, we can force an address (even to be negative related) with respect to another location
that we prefer to relate to20:

Relative labels are limited to a maximum distance of +/- 255 positions (1 byte) from the
associated address to prevent potential compilation issues.

Furthermore, visually, relative labels are indicated by their respective sign (+/-) within the
memory table to facilitate their identification (in fact, hovering over that cell displays the asso-
ciated relative label)

In the program window that displays the list of all created labels (both automatically and
manually), relative labels are not shown, only the regular ones, to keep the display clear.”

Now the presence of the relative value and the type of relationship in the definition of a
memory cell in JC64dis becomes clear: they represent precisely the relative labels.

20In the example, now the relative reference is forced to be on the SetVolume label.

18

12 References to Labels
When a 16-bit address is written in a data area, it is split into the low byte and the high byte.
To achieve relocatable code, it is necessary to associate those values with the address that gen-
erated them during its decomposition. In assembly language, there are specific operators for the
low part (<) and the high part (>) that, given an address, return its low and high values.

Identifying these bytes from a machine code program requires some experience. However,
once recognized, JC64dis allows you to easily21 create the association for the low and high bytes
to the memory location it pertains to:

In the cases that low and high part are in little-endian order, you can use the world data type
to obtain the address directly without operators:

References can also be associated with the memory cells of a CPU instruction22, as happens
for example with this code:

21There are various specific utilities, including a wizard with real-time preview of the changes that will be made
to the memory cells, complete with association of progressively numbered labels.

22In this case the association must be created in the cell in which the operand is contained, not in the cell with
the opcode of the instruction.

19

As in the case of the relative labels, symbols are also shown in the memory table for the
references to easily understand the status of that byte (in fact it is still used the type and
relationsip relation of the memory cell defined before).

What happens when there are both relative labels and references to such values? The answer
is that the program handles them simultaneously, appropriately mapping these values to the
previously defined type and relationship fields.

Let’s consider a scenario where we have an address that serves as both a reference to a memory
cell (repetitionTableV1) and a relative label (+1) to repetitionTable:

As you can see, the relationship is now indicated by a new symbol, and the program auto-
matically manages both cases. Otherwise, I would have encountered what follows, namely the
use of the label wrongLabel because it is referenced elsewhere in the program:

Considering this legend:

• Plus: reference +

• Minus: reference -

• Major : reference #<

• Minor : reference #>

The correspondence between the code on the screen and the meaning for the program becomes:

• + Plus

• - Minus

• > Major

• < Minor

• ˆ Plus Major

• \ Plus Minor

• , Minus Major

• ; Minus Minor

20

13 Constants
Constants, which were previously explained as being possible to create for labels external to the
program area, can actually be generated in a dedicated editor and associated with memory cells
as attributes of the same cell. This allows us to have different constants for the same value if
they are used in different parts of the program and for different purposes (thus making the code
more readable and easily maintainable).

For example, the value $ff could represent the end of a music player pattern, but it could
also represent the end of a track. Therefore, we would like to be able to name them both
END PATTERN and END TRACK, both with the value $ff, and insert these constants within
instruction operands or data area bytes.

In the editor, there are 20 columns numbered from T0 to T9 and corresponding to the char-
acters T+shift+0 to T+shift+9. In these columns, we can insert both the label associated with
the constant and its optional description.

In the example above, the constant of type T0 for the value 0, labeled as ABC, has a comment
that will appear next to its declaration in the assembly source.

When a constant is associated with a memory cell, the value of that cell in the source code
is replaced by the constant, whether it is used as an operand in an instruction or within a data
area. Additionally, the symbol (without the ‘T’) from the chosen column appears inside the
memory table, visually indicating our selection.

It is undeniable that a source code in which constants appear becomes easier to understand.
For instance, consider this example where certain commands are represented as constants within
the data area:

21

In addition to being able to define a constant between 0 and 255, it is also possible to define
constants to be assigned to numbers from 256 up to 32767, which corresponds to a word.
Therefore, when dealing with 2-byte operands or data areas formatted as words, assigning these
constants results in their substitution. Consider the following example:

Constants of this type are used in the following context:

Even for constants, it is verified that the entered name is unique. However, this check is
omitted when dealing with free constants. By ’free constants’, we mean constants where there
is a mathematical formula23 that can depend on other constants or memory labels. But what
utility do they serve?

For instance, if we denote the duration value of a musical note with the constant DUR, then
DUR+1 represents the next duration step, DUR+2 represents the one after that, and so on.
Instead of having N constants named DUR 0, DUR 1, etc., we have a single constant DUR, and
additional values are expressed as DUR+x.

23Attention, the program does not verify that the formulas entered have a correct value, but simply replaces in
the source the occurrence of the value to which it is associated with the formula itself.

22

14 Related relative address
The constants we have just seen can also be used to address data areas that contain relative
addresses within a table. These addresses are placed as offsets relative to the base address.
In the source code, these offsets are determined by the difference between the position of the
relevant location and the base address. Therefore, it suffices to create constants representing
this difference value and insert the appropriate extraction symbol (if the offset is 16 bit) for
either the high or low part (otherwise just the byte).

Let’s consider this data area (pattPtr), which may seem inconspicuous at first glance. How-
ever, upon closer observation, those numbers are nothing but offsets of patterns relative to the
first one (patt00):

All we need to do is define suitable constants to make the result more meaningful:

This works well, but in the presence of offsets that are later relocated to different memory
positions (as often happens to optimize its usage), the formula we need to write becomes even
more complex.

23

In this case, the system allows us to define references to memory addresses24, prompting us to
input the base and destination25. After that, the address (in composite formula) is automatically
generated by the system:

This is, in fact, the relocation code that moves the patterns into the dataBuffer, starting from
pattern position t1Patt00 :

24The assignment occurs through a specific mask that applies the addresses to the selection made.
25These are two fields we had seen in the memory cell definition for the program.

24

15 Code Relocation and Memory Patches
There are two features of a program that alter the original file (thus preventing an identical
binary code from being reconstructed by assembling the obtained source). However, these
features serve a purpose.

1. Value Variation in Binary Files: The first feature allows for modifying the values
present in the binary file being analyzed. The new value replaces the existing one and
becomes the effective value disassembled during execution. This enables us to address
bugs in the code through “old-school” patches. For instance, we can alter the opcodes of
instructions (e.g., to achieve infinite lives in a game) or increment other values (such as
time for completing a game level).

2. Code Relocation: The second feature involves relocating a piece of code to a different
memory area. This adjustment accommodates the program’s behavior during its initial
phases, allowing us to study the source code cleanly. Practically, relocation involves copy-
ing the relevant code section to the destination area. Consequently, the original area
remains visible, making it advisable to later declare it as garbage.

In the example above the code is relocated (by the program) from originCode to goInit and
the call to initTune occurs in the new area. Without the relocation applied in JC64dis the in-
struction that jumps to initTune would be on an empty memory area and therefore meaningless.

25

16 Automatic Type Detection
JC64dis has the capability to automatically determine whether a memory area is code or data
type when analyzing a file in the C64 SID format26.

It features an integrated SID player (CRSID) that, while not able to perfectly emulate
all files and may not provide the most faithful audio quality, allows you to track the exe-
cuted/read/written state for each memory cell while listening to music.

To use this functionality, follow these steps:

• Listen to each individual song contained in the file in its entirety (at normal speed or
accelerated to save time).

• Load the files located in the temporary area (as set in the options) into your project.
These files should have the same name as the SID file, followed by an underscore, the tune
number, and the .bin extension.

• Apply the flags contained in the newly loaded files.

Based on these flags, the areas that were “touched” by the program during emulation are now
categorized as either code or data type, making our initial task easier.

The flags (SIDLN) for a memory cell contain the following information:

• Read Memory: The memory was read by the program.

• Written Memory: The memory was written by the program.

• Executed Memory: The memory was executed by the program.

• Initially Read Memory: The first operation was reading the memory.

• Initially Written Memory: The first operation was writing to the memory.

• Initially Executed Memory: The first operation was executing an instruction in memory.

Given these flags, the algorithm that marks the memory becomes:

• Assigns memory as data if it was read or written (whether or not it is the first operation)

• Assigns memory as code if it has been executed (whether or not it is the first operation):
this assignment takes priority for the program over the previous one.

This feature is however experimental (since CRSID has been patched to generate SDLN flags)
and the results, while good, are not 100% complete.

26So the file emulation format that contains the player code and the music data that, if executed, produce the
music onto the C64.

26

17 A4 Frequency
Previously, it was mentioned that the program is capable of determining the frequency of the
A4 note used in a musical composition and using it as a comment. In reality, it does more than
that—it also marks the area of this table as a data type.

When programming the SID sound chip, you have 8 octaves of note range available. There-
fore, a frequency is chosen to serve as the reference for all other notes, conventionally set as the
A4 note. The program can determine this frequency by leveraging certain “statistical” analyses
of the data27, not just the code itself28.

For this reason:

• It might identify areas that coincidentally resemble musical frequencies, resulting in a note
that doesn’t match.

• It could identify an area of musical frequencies but fail to precisely locate the start and
end, detecting an A4 note slightly shifted higher or lower.

• It might not identify the table at all due to bugs introduced by the programmer in the
data, which could also affect the played notes if present in the composition.

The methods used are listed here29:

• Linear table: the 96 frequency notes are divided into two linear tables, with a lower part
and an upper part. The order in which these two tables appear and their distance from
each other can be entirely variable (depending on how the programmer has organized the
memory). However, the program searches for them regardless until a match is found.

27Rather than relying solely on statistics, this process involves mathematics. Within certain error limits, the
program ensures that the values of frequency doubling every 12 notes are respected, evenly distributed across
the octave.

28All the methods used, as well as their activation, are parameterizable through options. It’s up to the user to
determine whether the localization is indeed correct and useful.

29The order is not random, but they are searched from the most probable to the least probable to reduce the
margins of errors.

27

• Combined table: the 96 frequency notes are stored as 16-bit values with either little-
endian or big-endian alignment, resulting in their contiguous placement in memory.

• Inverse linear table: this method is similar to the linear list approach, except that the
notes start from the highest frequency and proceed to the lowest, effectively appearing
inverted.

28

• Linear octave/note table: conceptually, the notes are grouped octave/note-wise as
nibbles within a byte. Since there are 12 notes, 16 values are used: the first 12 represent
notes, while the remaining 4 are zeros.
These values are split across two tables, containing the low and high parts of the frequency
value. The tables can be scattered in memory, with one preceding the other or vice versa.

• High octave (13) notes: only the frequencies of the last octave are reported (as the
others can be derived by appropriately dividing their values).
These frequencies are presented in two tables as the low and high parts of the frequency,
with the first note being a pause (no sound). Consequently, the table consists of 13
compressed words.

• Linear scale (CDEFGAB) table: in total, 56 notes are listed, divided into two tables
for the high and low parts (spatially distributed in memory).
These correspond to the 7 notes (across 8 octaves) of a C major scale.

29

• Short linear table: as ”Linear Table” but limited to first 730 octaves.

• Short combined table: as ”Combined Table” but limited to first 7 octaves.

• High octave combined table: only the high octave is present, but with combined table
of low/high pair of values.

• High octave combined inverted table: as the previous, but with inverted value (so
from high to low frequencies).

• Low octave combined table: only the first octave is present, but with combined table
of low/high pair of values.

• High octave (12) table: this is like the high octave (13) table, but iwthout the rest
(empty) note at beginning, so with 24 values.

30Actually, in many players, the last notes are sometimes not encoded because, if the choice of A4 frequency to
use is high, it exceeds the limit of 65535 for the chip’s word, so the check is set to be less strict about the
correctness of the values towards the end of the table. If other algorithms fail, this further reduced search
(within 7 octaves) should still ensure finding a table.

30

18 Percentage and Freeze
Since the program serves to recreate the original source of a binary file, JC64dis proposes a
virtual semaphore that indicates the degree of “understanding” we have managed to recreate
with it:

• A 0% percentage, represented by red, means that we have not yet understood anything.

• A 50% percentage, represented by pastel yellow, indicates that we have already outlined
the source.

• A 100% percentage, represented by green, signifies that everything is understood down to
the finest details.

This percentage is derived by calculating how many labels we have renamed (thus giving them
their true meaning in the source) compared to the total existing in the source. This is because
labels like “W1234” provide no information, while a name like “playFlag” already identifies its
function.

Another unique feature in JC64dis is freeze, which, as the name suggests, is used to store a
snapshot of the current recreated source code.

Its usage can serve two purposes:

• Saving the work’s progress state (e.g., for a 15% step percentage) to document how we
arrived at the final source.

• Presenting the final source correctly.

The latter point is not trivial. As we have seen, JC64dis has over 330 options that influence
how the final result is generated. Therefore, if we open a file created by another user, we may
find the source formatted aesthetically poorly because our options are entirely different.

However, by opening the source within freeze, we will find it in the correct (original) format.

31

