UNIVERSITY OF COPENHAGEN

Emulation of Nintendo Game Boy

(DMG-01)
PyBoy
Troels Ynddal Mads Ynddal Asger Lund Hansen
QWV828 SJT402 CMG881

January 18, 2016

Abstract

This project is covering an emulation of the Nintendo Game Boy (DMG-01) from 1989.
The Game Boy has been emulated many times before, but this project will emulate it in
the programming language Python 2.7. The implementation is not based on any existing
emulator, but is made from scratch. The emulation has proven to be fast enough, to run
software from cartridge dumps, with the same speed as the Game Boy. Most essential
components of the Game Boy, are part of the emulation, but sound and serial port are
not included in this project. The implementation runs in almost pure Python, but with
dependencies for drawing graphics and getting user interactions through SDL2 and NumPy.

Forewords

The main purpose of this project is to learn how computer systems can be emulated and
educate ourself in levels close to the hardware. By getting to work with the lowest levels of
a system, we get an in-depth knowledge of the hardware.

The secondary purpose is to help others, who pursue the same project. During the project,
it has become clear, that some of the specifications can be ambiguous, directly misleading,
or undocumented, which will be described in this report too.

Aside from a general understanding of computers and object oriented programming, we
expect the reader to have a level of understanding of hardware, comparable to introductory
courses in machine architecture and operating systems. There will be comparisons to the
MIPS architecture, but it is not a prerequisite to reading this report.

Contents

1__Introduction| 6
(.1 Motivation| 6
1.2 What is a Game Boy| 6
1.3 Terminology|. 6

[2__Emulation| 6
2.1 Architechturel 7

.11 Structure 7
2.1.2 Interconnectionl . 7
[2.1.3 Implementation|. . . . 7
2.2 Partial Conclusionl 8

|3 Central Processing Unit| 8
[3.1 Sharp LR35902[. 8
............ 9
............ 9

[3.3.1 General purpose reg- |

[istersl. ... 9

13.3.2 Special registers| 10

3.4 Operations| 10
13.4.1 Arithmetic Logic Unit| 10
B.42 Toaddatal 10

A. umps| 11

3.5 Interrupts| 11
o.0. 1 VBLANKI 11
B52Lcdd. 12
B53 SERIAT] 12
B5Z TIMER 12
B55 HiToLol 12
B56 _HALT 12

8.6 Fmulationl 12
(3.7 Partial conclusion|. 13

4 Boot-ROM! 14

4.1 FExtractionl. 14
4.1.1 Physical 14
4.1.2 Softwarel. 14

4.2 Disassembly| 15

4.3 PBFmulationl 15

4.4 Partial Conclusionl 15

15
5.1 Memory bankingl 16
5.2 Adding Functionality|. 16
5.3 Memory Bank Controllers| . . 16

[5.3.1 Cartridge types| 16

0.4 FBFmulationl 17

(0.5 Partial Conclusionl 17

[6 Random Access Memory| 18
6.1 Overview] 18

§ B o 18
6.3 Video RAM| 18
6.4 Special addresses| 18
6.5 PBEmulationl 19
6.6 Partial conclusionl. 19
Display] 19
M1 Tilesot 19
[r.2 Tile Datal 20
[c.3 Tile Viewsl. 20
........... 21

D oodprites| Lo oL 22
(o.1 DMA to OAM| . 22

6 Registers|. 22
[7.6.1 LCD Display] 22
(6.2 LCD Statusf 23

[.6.3 LCD Position and |

| Scrolling|. 23
.............. 23
(.8 PBEmulationl 24
(2.9 Partial conclusionl. 24
8 Interaction| 25
8.1 PEmulationl 25
8.2 Partial conclusionl. 25

19 Veritying solution| 26
9.1 Debugging|. 26
9.2 Unittest]. 26
021 CPUO. 26

9.2.2 Display| 27

9.23 RAMI 27

[9.2.4 Cartridge| 27

9.5 Test-ROMsl 28
9.4 Partial Conclusion| 28
(10 Performancel 28
[10.1 Finding optimal datastruture] 28
(10.1.1 'Test purpose| 28

(10.1.2 Test setup|. 29

(10.1.3 Datatypes| 29
(10.1.4 Test resultsl 29

[10.2 Interpreter vs. JIT| 30
(10.2.1 Test purpose| 30

(10.2.2 Test setup|. 30

M023 Resultd 30

10.2.4 Test enviormentl 31

(10.3 Partial conclusionl. 31
(11 Conclusion| 32

A ppend 35

|IA Class Map| 35
IB Page 14 of Zilog Z80 Reference |
| Manuall 36
|C Boot-ROM picture] 37
[D_Performance test results| 37
[E_CPU dissection 38

[Data basis for optimization ef- |

[Tforts 38

|G Performance comparison be- |
| tween Pypy and Python| 39

H Results of Test ROMSs 40

Category
Hardware emulation

Keywords

Copenhagen, university, computer, science,
emulation, game boy, nintendo, DMG-01,
LR35902

1 Introduction

This project describes an emulation of
the first Nintendo Game Boy (internally
dubbed DMG-01). The emulation will be
programmed in Python 2.7 and will have
almost the same features as the real Game
Boy. The sound driver and serial port will
not be part of the emulation. We have cho-
sen to call the emulator “PyBoy”.

For every emulated component, there
will be a description of how it works and
how the emulation of it has been made.
After the examination of the components,
there will be a test section and an optimiza-
tion section, which go through the results
of the unit testing and show how the per-
formance has been optimized.

1.1 Motivation

As written in the abstract, the main pur-
pose of this project is to educate ourselves.
But what can the emulator be used for?

Digitalbevaring.dk is a website by The
Danish National Archives, State and Uni-
versity Library and The Royal Library.
One of their common goals are to pre-
serve current technology to save our cul-
tural legacy for the future[25]. With an em-
ulator, you have the ability to display old
technology, that might become rare in the
future. By making an emulator and doc-
umenting how it works, it will be possible
for our ancestors, to understand how the
technology worked.

It’s also a matter of convenience. Em-
ulating a piece of technology can be used
for ease of use or for new hardware to be
backwards-compatible[§].

1.2 What is a Game Boy

The first Game Boy was introduced on
April 21, 1989, in Japan. The original
Game Boy line sold 119 million worldwide
as of April 2009[9].The first Game Boy was
internally dubbed “DMG-01" (Dot-Matrix-
Game), and these references are still visible
on the printed circuit boards. The Game
Boy is equipped with a 8-bit CPU clocked
at 4 MHz and a monochrome, 4-tone LCD
display[1§]. Instead of installing games on
the device, like you would on a personal
computer, the games come in external, re-
movable cartridges. All game data, includ-
ing saved progress, is stored in the car-
tridge. The cartridge consists of a volatile
and non-volatile memory. The game data is
stored on the non-volatile memory as read-
only, while the saved games is stored in bat-
tery powered volatile memory. This is due
to the fact, that flash memory is too expen-
sive at the time.[3] This choice of memory
also mean, that the cartridge effectively ex-
pands the RAM/ROM bank of the Game
Boy.

1.3 Terminology

Since some computer architectures and
paradigms use different terms for bit
switching and integer notation, these tables
will show the expressions used in this paper.
For bit switching, we adopted the terms
used in the Zilog Z80 reference manual:

Set Switch to logical true
Reset Switch to logical false
Test | Reading the state of a bit.

For integer notation, we use typical
mathematical notation for equations and
Python notation for code.

Abbreviation | Python | Mathematical
Hex 0xB Big
Dec 11 11 10
Bin 0b1011 10119

2 Emulation

An emulation is an imitation of software
or hardware, which gives you the ability to

use a product, even if you don’t have the
original. An emulation has to imitate the
real product as much as possible and even
replicate known errors. An emulator dis-
tinguishes from a simulator by the ability
to replace the original product completely.
The focus of a simulator is to replicate a
condition or situation[25].

An example of a simulator is the Ap-
ple iOS Simulator, which simulates the op-
erating system of the ARM-based iPhone.
The Apple iOS Simulator can simulate the
conditions on the Apple iPhone, by build-
ing the application for the modern x86-
architecture, which can be run on a desktop
computer. This distinguishes it from a em-
ulator, which would have reused the binary
ARM-code and tried to emulate the hard-
ware specification of the iPhone[I]. But
since the desktop CPU is much faster, than
the mobile ARM CPU, this simulator can’t
be used for performance tests, because the
simulator doesn’t imitate the CPU restric-
tions of the ARM CPU.

Our goal is to emulate the Game Boy to
makes it possible to run the software from
real game cartridges, like you could on the
original Game Boy.

2.1 Architechture
2.1.1 Structure

Nintendo filed a patent in 1990, describ-
ing in clear details, the architecture of the
Game Boy. Especially Fig. 4 of the patent
(see Figure shows the integration and
connection between CPU, RAM, cartridge
and display.

With inspiration from this, we will make
classes in Python, for each of these compo-
nents. This will set up the foundation for a
“guest system”, on our ‘host system”, run-
ning Python. This guest system will be the
virtual Game Boy hardware, theoretically
capable of running every existing piece of
software, written for the Game Boy.

2.1.2 Interconnection

The real Game Boy runs all of the hardware
in parallel, and synchronizes through inter-
rupting the CPU. The interrupts work as

~14

LCD PANEL
IGHTNESS

5 160(H)x 144(V) 529 RDSUSTHENT
LCD BUFFER 50
PROGRAM AVPLIAER
CARTRIDGE DMG-REG
ROM IR3E02
EXPAND RAM]
MBC. otc LCD PWR SOURCE

]
ED CONTROL SIGNAL

LCD umvz SIG.BUF. A

Lco |l conTROL
32P CARTRIDGE oise | f| OSPRam
CONNECTOR cmmmﬁ(ot | looreus)| eaxair
FACE

% o 3| S
3soam mu/ur:a = |\ mes
NT 14
4
e S
L]l B
WORK CONTROL i -
RAM [c268 || Chy HINTERALAM -2 ~"®
] R
S-RAM /U ¢ I AR
DATA BUS | ono0
|
22 _ 24~ >)
INTERRUPT
& ¥ RO ER] 541 FIER

patt)

SRAL | oy’
TRANSFER

CONTROLLER | [SOUNO-3

2994 2

XTAL OSCILLATION 0-4

CIRCUIT k)

ozcow ||

DO-APDMZMO

6P SuB
CONNECTOR

sva ovioer || ®
-Bv

l TIMER 56’ 8 J

Figure 1: Architecture of the Game Boy from
patent by Nintendo[28, Fig. 4]

a unidirectional message system, between
the hardware parts. The LCD-controller
might trigger the VBLANK-interrupt, to
make the CPU do an updating routine, but
the CPU can enable and disable interrupts,
if it’s an inconvenience to the programmer.

In our software, we have a MotherBoard-
class, as the first step inside the guest
system. This class will instantiate every
other component of the Game Boy, like the
CPU, RAM, Cartridge, and Display classes.
These will all be covered in detail in the
following sections.

The structure has a strict hierarchy,
where parents call functions and accesses
elements of children. By disallowing chil-
dren to make calls to their parents, we keep
the code less entangled and, thereby, easier
to read.

2.1.3 Implementation

As the Game Boy has an 8-bit processor,
and a modern computer has a 32-bit or 64-
bit processor, we had to figure out a way to
support the different architectures. Python
doesn’t support storing a single byte in a
variable, like the C-type char. Our first

Main Window_SDL2

Host System

Guest System

Motherboard LCD

0SC

B y)
>
<
[}

CPU

\4 ¢

Cartridge

Interaction

Figure 2: Simplified architecture of the PyBoy
implementation (see Appendix for the com-
plete version)

approach had an “8-bit” class with a con-
structor and a set of functions, to make sure
we didn’t accidentally use more than 8 bits.
This proved to be incredibly slow, and had
to be optimized, which will be described
in greater detail in the “Performance” sec-
tion. Our second approach, which proved
to keep the time boundaries, was to use a
normal integers, instead. This means, that
on a 64-bit system, every byte would take
up 8 times as much memory and after ev-
ery operation, that could possibly overflow
into the 9*" bit, we would have to mask out
excessive bits. This choice would not be op-
timal, if we were expecting to run the em-
ulator on constrained hardware. We chose
to prioritize speed and correctness of the
CPU, and let it use the extra memory.

2.2 Partial Conclusion

The initial structure is to organize the pro-
gram with classes, where each class repre-
sents its real counter part. This will yield
a more natural flow in the code, and keep
a logic seperation of the classes. It would
have been possible to make a single-class
program, but it would lose readability and
become more difficult to maintain and de-
velop.

Having a 32-bit or 64-bit processor will
cause a memory penalty on the host sys-
tem, when emulating an 8-bit processor.

To form an overview of the emulation, see
appendix[A] where there is a class map, cov-
ering the architecture; including: Display,
Interaction, RAM, Cartridge, and CPU.
These emulations will be explained in the
following sections.

125]

3 Central Processing Unit

The CPU of the Game Boy is single cy-
cled, meaning it has no pipeline[13]. Un-
like modern consoles and personal comput-
ers, the Game Boy has only one processor.
The Game Boy has a primitive sprite en-
gine, which off-loads the CPU. The CPU
still has to move and load background ele-
ments from the memory to the designated
video memory.

3.1 Sharp LR35902

The CPU of the Game Boy was derived
from the Zilog 780, but was modified, to
only include some parts of the Z80. The
CPU of the Game Boy was officially named
LR35902 and is produced by Sharp. The
specification of the LR35902 includes a re-
duced instruction set and fewer registers
than the Zilog Z80. The LR35902 has the
same registers as the Intel 8080 (Introduced
in April 1974)[12], but had some of the
added functionality of the Zilog Z80 (intro-
duced in July 1976)[24].

Intel 8080

Zilog 280 Intel 8086

l l l l l
1974 1975 1976 1977 1978

Figure 3: Release timeline of Intel 8080[12)],
Zilog Z80[2]|], and Intel 8086[1|]

The LR35902 and Z80 both uses the
same instruction set from year 1974. The
780 has an 8-bit opcode length, allowing an
instruction set of 256 opcodes. But by ex-
ecuting a special prefix instruction, called
opcode prefix, the CPU will use a different
lookup table, for the next opcode. When
the prefixed opcode has been executed, it

will revert back to the main opcode table.
The Game Boy’s LR35902 is a hybrid of the
Intel 8080 and the Zilog Z80 in the sense,
that it includes all the features from In-
tel 8080, but also has some of the features
introduced by Zilog. The Intel 8080 also
carries a resemblance to the modern x86
(first introduced in 1978), since 8080’s suc-
cessor, Intel’s 8086, defined the initial in-
struction set of x86. The opcodes of Z80
and LR35902 are variable in length and are
determined by the byte-length of the op-
code parameters. This means, that unlike
the MIPS architecture, you can’t do ran-
dom lookups in the program code, without
a known entry point.

3.2 Opcodes

The opcodes are constructed as seen in fig-
ure [l The dashed lines are mandatory,
depending on the opcode. The prefix is
used to switch to other lookup tables. The
LR35902 only supports one prefix, which is
called the CB-prefix, derived from the hex-
adecimal value of the code.

8 bit 8 bit 8 bit 8 bit
+—r> et —>

[__prefix_ [opcode [immediate | immediate |

Figure 4: Z80/LR35902 opcode assembly

The CB-instruction set of the LR35902
includes operations for rotate, swap, and
bit-wise test, set, and reset of registers. The
780 has 4 additional instruction sets for
negations and extra load functions[23].

The main instruction set includes:
Arithmetic functions, jumps, calls, stack
push/pop, and control instructions.

The opcode can have an immediate ap-
pended after it. The length of the im-
mediate is predetermined by the opcode
and can be either 8 or 16-bit. In gen-
eral, the CPU only supports unsigned in-
tegers, with the only exception being rel-
ative jumps and two Stack Pointer oper-
ations. The signed data is formatted in
two’s-complement and have to be treated
differently by the CPU, since every other
integer is unsigned. The 16-bit immediates

are in big endian, which must be taken into
consideration when building the emulator.

3.3 Registers

Some registers of the Z80 has been omitted
in the LR35902. The Z80 has an Alternate
Register Set, in addition to the Main Reg-
ister Set, which is 8 general purpose regis-
ters. The Alternate Register Set is no dif-
ferent from the main registers, but makes
it possible for fast context switch, by swap-
ping the register sets. Besides the 8 general
purpose registers, 4 Special Purpose Regis-
ters has been omitted. These 4 registers
were used for address indexing, memory re-
fresh, and indirect calls by interrupt (see
Zilog Z80 data sheet in appendix .

The registers in the LR35902 are ar-
ranged as in figure

Bit15...8 Bit7...0
A (acc/arg) F (flags)

B C General
Purpose
D E Registers

H (addr.) L (addr.)
SP (Stack Pointer) Special
Purpose
PC (Program Counter) Registers

Figure 5: CPU registers arranged in 6 rows of
16-bit

3.3.1 General purpose registers

All the general purpose registers are 8 bits
each, but a single row can be combined into
a 16-bit register. This is typically used
when addressing data from the memory,
since the memory addresses are 16-bit. The
registers are general purpose, but each reg-
ister still serve a specific purpose. The A
register is commonly used for accumulating
numbers and as argument for calls. This is
due to the fact, that most 8-bit arithmetic
and logical instructions saves the result in
register A (80 of 104 ALU instructions, in
the main instruction set, use register A).
The F register is a bit special, which we
will get back to in a moment. Register B,
C, D and E can be used for anything and

doesn’t carry any special properties. Regis-
ter H and L are a bit special, too, since they
are often combined as HL, which is needed
for indirect memory access. Indirect mem-
ory access is slower and takes 8-12 cycles,
where the same instruction take 4 cycles on
a register.

3.3.2 Special registers

Stack Pointer and Program Counter are self
explanatory. The Stack Pointer points to
the next unused space, of the stack, and
the program counter points to the next in-
struction.

Back to the F register. The F
register can’t be used as operand for
ALU(Arithmetic Logic Unit) and load op-
erations, because the register is reserved for
ALU flags.

The ALU can set 4 flags in the register

Math operation resulted in zero
Math operation used subtraction
Math operation raised half carry

Q= 2N

Math operation raised carry

Register F

716|514 13[2]|1
ZIN|H[C|[O0O|O]|O

Figure 6: ALU flags of register F

The flags span from the 8™ bit to the
5%, The lower nibble is always zero. These
flags can be used to check a condition be-
fore jumping or handling carry, caused by
arithmetic operations.

3.4 Operations
3.4.1 Arithmetic Logic Unit

The LR35902 can’t handle overflows, but it
has a carry instead. The carry flag can be
set, when an integer overflows, among other
things.
Consider the case, where register A =
20019 and B = 25019 with the carry reset.
First, calculating the addition

20019 + 25019 = 45049

10

By taking modulo 256 of the result, we will
get the result capped to 8 bits.

45010 mod 25610 = 19410

Dividing the previous result by 256 and
flooring the result, gives us the new carry
status.

145010/25610| = 110

The bit that overflowed will be moved to
the carry and may be used in other opera-
tions.

The carry can be used to check a jump
condition. If you were to repeat a loop
256 times, you could initialize a register
to 0 and increment it with each repetition.
When reaching 256 and incrementing once
more, the register would overflow to 0 and
the carry flag would be set. This would
make it skip the jump and break the loop.

This case showed the carry used as bor-
row from an overflowed operation, but the
carry is more than that. The carry flag is
also used by rotate functions, where it is
used as an extra bit or as a duplicate of the
rotated bit. One case is the Rotate Right
Circular (RRC) operation. With this opera-
tion, the 15 bit is copied to the carry and
to the 8" bit, meanwhile, the other 7 bits
are shifted to the right.

Carry Before RRC
Lofefo [[a]+ o]+ [1]-
Carry After RRC

[T [[Tl -

Figure 7: RRC operation

3.4.2 Load data

The LR35902 supports typical load oper-
ations, that moves data between registers
and between memory and registers. But in
an effort to optimize performance, when it-
erating over an array, the LD-operation can
do a “Load from HL pointer and increment
HL” or “Load from HL pointer and decre-
ment HL”. This can be helpful for iterations,
because you don’t have to increment the
register, after each load, and thus it saves

4 of 12 clock cycles, otherwise used by LD
followed by INC.

Even though, the Sharp LR35902 is an 8-
bit CPU, it supports a variety of 16-bit op-
erations. The CPU supports some unusual
instruction like LD (al6), SP, where al6
is a 16-bit unsigned integer and the paren-
theses means its pointing to an address.
The operation says it will load the 16-bit
Stack Pointer to an 8-bit cell of the mem-
ory (pointed by an 16-bit address pointer).
But, the Stack Pointer is actually broken
into 2 x 8 bits and is saved to the address
of a16 and a16-+1.

3.4.3 Jumps

A major difference from MIPS to the
LR35902, is how jumps and calls are han-
dled. While the MIPS architecture has
32 registers, the LR35902 is limited to 8
registers[29, page 152]. In MIPS the Pro-
gram Counter is saved to a reserved regis-
ter, “Return Address”, when jumping, but
LR35902 can’t afford to reserve a single reg-
ister for jumps. For LR35902 return ad-
dresses are pushed to the stack, using CALL,
and popped by using RET (Return from
call)[26, page 278].

In addition, the LR35902 has an advan-
tage compared to MIPS, since it can make
jump across its entire 16-bit memory space,
while 32-bit MIPS can only jump with 26
bits immediates, which doesn’t cover its 32-
bit memory space. MIPS does support 32-
bit jumps, but will require the use of a reg-
ister to hold the 32-bit address.

3.5 Interrupts

On hardware level, the CPU of the Game
Boy has just one processing core. This
means, that it has to serve a lot of differ-
ent purposes. If one were to make a game
without interrupts, it would possibly use a
lot of time in spinlocks and consume more
power (see HALT [3.5.6).

Timings would be close to impossible to
control and changes in the code, would
cause a cascade of changes. If one were
to have a timer, that counted seconds,
while moving around sprites and calculat-

11

ing game dynamics, some counters had to
be used, and the time of each instruction
should be accounted for.

Interrupts mitigates a lot of these issues
and leaves the programmer with more read-
able and efficient code.

None of the interrupts are mandatory to
serve. It’s up to the programmer to enable
the interrupts, which he finds useful.

When an interrupt is triggered, the CPU
automatically disables further interrupts,
to avoid nesting multiple interrupts. The
Program Counter (PC) is automatically
pushed to the stack and the appropriate in-
terrupt vector is run. It is up to the pro-
grammer to reenable interrupts through the
EI or RETI operations. This is often done,
at the end of serving an interrupt.

If multiple interrupts are triggered at
once, the first on the list below is served.
It is undocumented, what happens with the
ignored interrupts. Either, the CPU could
interrupt again once the interrupts are en-
abled or it could be up to the programmer
to poll the interrupt register.

The Game boy has 5 main interrupt
vectors:

Name Cause Call
VBLANK | LCD has drawn a frame | 4014
LCDC LCD controller changed | 4814
SERIAL | Serial transfer completed | 5014
TIMER | Serial transfer completed | 5814
HiToLo | User pressed a button 6016
All main interrupts are enabled or

disabled through the register at address
FFFF14. The cause of the interrupts, can
be controlled individually.

3.5.1 VBLANK

The interrupt occurs, when the LCD has
drawn a full frame. The programmer
is not allowed to change the video-RAM
(VRAM), during the rendering of a frame.
This interrupt can be used by the program-
mer, to change the content of the VRAM,
between frames.

Apart from triggering the game to up-
date the frame, in Pokemon Blue, this in-
terrupt has been observed to change to the

color palette, to make a white-to-black fad-
ing effect. It is also used in Pokemon Blue,
to change the pattern of water, to make the
waves move.

3.5.2 LCDC

This interrupt can be triggered by a range
of causes. The main interrupt gets enabled
through FFFF 4, but the cause are modi-
fiable, from the STAT register (see section
7.6.2).

The main reasons are, when the LCD
controller changes to a specified mode. It
can also be used to wait for the screen to
draw a specific line, through the LYC regis-
ter (see section [7.6.3).

3.5.3 SERIAL

This interrupt is triggered, when using the
serial port of the Game Boy, to communi-
cate with another Game Boy. This is not
covered in this project.

3.5.4 TIMER

The timer register can be setup to trigger
at a specific time interval. The timer
works by incrementing a special register,
The overflow triggers
the interrupt and the timer resets, to
a predefined value, and start counting
again[19]. The registers are:

until it overflows.

Address | Name | Function
FF04,¢ | DIV Divider Register
FF0516 | TIMA | Timer Counter
FF06.¢ | TMA Timer Modulo
FF07 | TAC Timer Control

The divider register increments automat-
ically, with a frequency of 16,384 Hz and is
resets, if anything is written to it. The pur-
pose of this register is not documented, but
might be used for generating pseudo ran-
dom numbers.

The Timer Counter increments, at the
rate specified by TAC. When it overflows, it
resets to the value of TMA and triggers an
interrupt.

12

Timer Modulo contains the timer offset.
Since the timer is only triggered on over-
flow, the only way to adjust the length of
the timer, is to restart the timer with an
offset.

The Timer Control sets the speed of the
timer with a divider and tells the timer
component to start or stop.

Bit Function

00: 4096 Hz
01: 262144 Hz
10: 65536 Hz
11: 16384 Hz
0 = Stop

1 = Start

0-1

If the Timer Interrupt has been enabled,
the CPU will jump to address 005014, when
TIMA overflows. At this address, the pro-
grammer has prepared a routine that de-
cides what to do.

3.5.5 HiTolo

When the user pushes a button, this inter-
rupt is triggered, to let the game immedi-
ately react, to the user input. The user
won’t see the changes until the next frame,
but it can make the game feel more respon-
sive, to not lock the interaction to specific
time of a frames.

3.5.6 HALT

Games are recommended to use the HALT
operation, to save power [I7, Using the
HALT Instruction]. The HALT operation
stalls the CPU, until an interrupt is trig-
gered. The interrupt breaks out of the HALT
and the CPU is transferred to the interrupt
vector. When returned from the interrupt,
it continues with the code, right after the
HALT.

3.6 Emulation

The CPU is implemented as a class, that
the MotherBoard-class controls. The CPU
initializes the Program Counter (PC) to 0
and waits for a call to its Tick-function.
The Tick-function will make one tick on

the emulated CPU and return to the
MotherBoard-class.

The CPU imitates the registers using a
list of integers. Each register is then ref-
erenced by A, F, B, C, D, E, H, L, SP, and
PC, each containing their respective index
in the list. Our emulator runs on 32-bit
and 64-bit Python, which means, that the
integer operations has to be restricted, due
to the 8-bit architecture. During any arith-
metical function, the function has to con-
trol overflow, underflow, and flags. These
are set using the respective functions of the
CPU class, that then sets the flags.

In order to run an opcode, each opcode
has its own implementation in Python. The
opcodes are arranged in a list with exactly
512 elements, illustrated in figure [l The
first 256 elements form the main instruc-
tion set and the last 256 elements form the
CB-prefixed instructions. Since the opcode
ranges from 0 to 255, we can use the op-
code’s literal value as an index in the list.
If the opcode is CByg, it reads the next byte
as the new opcode and offsets the instruc-
tion by 256, to do a look-up in the extended
instruction set. As mentioned before, each
Python-function controls overflow, under-
flow, and flags, which means, the execution
of Game Boy instructions is done by exe-
cuting a Python-function. Executing the
Python-function will return a new PC and
the Tick-function is done.

ox000		NOP
0x001		LD BC, d16
0x002		LD (BC), A
ox0FF		RST‘38H
lox100]		(CB)RLC B
loxt01]	(CB)RLC C	
oxtFF		(CB) SI.ET 7,A

Figure 8: List of opcodes

The state of the CPU is preserved until
the next tick. The CPU works by giving it a
new tick every time, the MotherBoard class
is ready for a new execution. By having this

13

abstraction (that the CPU doesn’t trigger
a new tick itself), we can make the emula-
tor single-threaded and control timing in-
dependently from the execution. This will
give the motherboard time to execute the
display emulator and keep the timing. Al-
though, the Game Boy is essentially “mul-
tithreaded” in the sense, that components
(Display Driver, CPU, Interrupts, etc.) op-
erate independently, having a single thread
of execution will reduce the complexity of
the emulator. We could have implemented
a multithreaded solution to benefit from
the multicore host system, but having to
synchronize threads and managing async
queues would require more resources, than
the actual instruction-execution. Since the
multithreaded execution is not required to
achieve the desired speed, the additional
overhead of multithreading doesn’t make
up for the resource usage.

3.7 Partial conclusion

Despite the difference in architecture be-
tween MIPS and LR35902, they still carry
a close resemblance. While there are mi-
nor differences from MIPS to LR35902, the
overall layout of the opcodes remain the
A major difference between the
two, is the register layout. While MIPS
has 32 registers, LR35902 only has 8 reg-
isters. This doesn’t mean MIPS is objec-
tively better, but rather, that it follows an-
other paradigm. MIPS doesn’t have a flags
register in the same way as LR35902. On
MIPS, zero and overflow flags is handled
directly by the ALU and is not saved in a
register. For jumps and branches, the re-
sult of a comparison is taken into action
instantly, while LR35902 saves the result of
a comparison in the F register.

When utilizing interrupts, the CPU gains
lots of time for other tasks, instead of
polling each component for updates. It also
gives a greater accuracy to time critical op-
erations, since they can halt the main pro-
gram and do the necessary updates, as soon
as the timer runs out.

As a programmer, it also gives a more
reliable program with greater flexibility.
Measuring time without a timer interrupt

same.

can be nearly impossible.

4 Boot-ROM

In emulation, the boot-ROM can be cru-
cial for a perfect emulation. The boot-
ROM is the first code, that a system ex-
ecutes before a potential operating system,
or in this case, a game. How the boot-ROM
sets up the hardware, can in some cases be
reverse-engineered by observing a startup
using electronic probes. Although a defi-
nite answer can only be found by dumping
the boot-ROM.

4.1 Extraction

The Game Boy has its boot-ROM on the
CPU’s die, which means, it is not acces-
sible without breaking the integrated cir-
cuit packaging. The boot-ROM can’t be
dumped, just by using a modified car-
tridge either, because the boot-ROM on
the Game Boy disables itself, at the last
instruction[28, Fig. 9]. The boot-ROM
has been successfully read by enthusiasts.
The two following sections will describe two
methods for dumping the boot-ROM.

4.1.1 Physical

On July 17, 2003, the user “neviksti” of
cherryroms.com’s forum posted a message
describing how he extracted the boot-ROM
[15]. He successfully etched the IC out of
the CPU package and took pictures of it,
through a microscope (see Appendix [Ef).
From the overview, he identified one of the
blocks to be the boot-ROM. We stitched his
sequential pictures into one, for readability
(see Appendix |C| for the full picture).

From these images, he read out each bit,
one at a time, with multiple passes [15].
The data is stored in 16 blocks of 16x8 bits.
The blocks are read left to right. The data
within each block is read as 16 bit words
from south to north with 8 words from left
to right (see ﬁgure. This is in total read
as 2048 bits — equal to 256 bytes.

14

Block 0 Block 1

—r'-—.a-.—*—.-—‘ - e
- .
'Y

EE N R REERRES.
.

!
o]
:

. -

- -

-

:
'
]
!
’
.
.

-

Figure 9: Shows the
Sull picture.

first two blocks from the

Block 0

word7 word 0

Figure 10: Illustration of how to read the data
from the microscope

4.1.2 Software

On September 28, 2009, (6 years after
neviksti), Costis Sideris posted a mes-
sage on his blog, “FPGABoy” (a reim-
plementation of the Game Boy Color on
an FPGA)[31]. He successfully dumped
the boot-ROM by desoldering the oscilla-
tor crystal and the CPU VDD off the cir-
cuit board and controlled it with an FPGA.
The trick itself was to let the boot-ROM
initialize the system, but halt the oscilla-
tion of the CPU right before the disabling of
the boot-ROM. He then lowered the CPU
VDD to make the CPU unstable, causing
the internal registers to be scrambled, with
random data. After several tries, he got

the program counter to point to a random
place in a modified cartridge and used a
NOP-slide to align it with a dumping rou-
tine. The routine simply read the boot-
ROM byte-for-byte and dumped it to the
FPGAJG].

4.2 Disassembly

To understand what the boot-ROM does,
we looked at the disassembly, that neviksti
The disassembly is crudely com-
mented and is mostly just one-to-one trans-
lations from opcode to assembly.

made.

LD SP,$fffe ; $0000 Setup Stack
XOR A ; $0003 Zero the VRAM
LD HL,$9fff ; $0004

Addr_0007:
LD (HL-),A ; $0007
BIT 7,H ; $0008
JR NZ, Addr_0007; $000a

We read through the boot-ROM and
commented on sections that were impor-
tant to our emulation. We skipped some
sections of the boot-ROM, because we did
not plan to support sound.

Initialize stack

pointer —> Scroll logo

Error
heck logd
Clear VRAM Lock up CPU
* Success

Initialize sound Disable boot-

circuits ROM
Copy Nintendo .
logo from ROM Execute cartridge

Figure 11: Flow of the boot-ROM

We used the boot-ROM as a guideline,
for our emulation. As the boot-ROM did
not use interrupts, nor other more ad-
vanced features of the CPU, it was a good
starting point.

As from seen in figure [II} the boot-
ROM initializes the hardware and shows
the Nintendo logo on the screen. The hid-
den agenda of this, is to check for coun-
terfeit games. The boot-ROM contains

15

the Nintendo, and so does any legal car-
tridge. By having the copyrighted Nin-
tendo logo on the cartridge, they effectively
prevented third parties from manufacturing
cartridges[28, claim 1].

When the boot-ROM has loaded, the
Game Boy shuts the boot-ROM off and
it is not accessible anymore. This is un-
usual, compared to traditional computers,
that are assisted by an operating system.
This is not the case with the Game Boy and
all interfacing and memory transfers must
be controlled by the game developer.

4.3 Emulation

Besides setting up audio, the boot-ROM
doesn’t bring anything to the Gamy Boy
emulator. The first part of the boot-ROM
initializes the RAM, but since Python al-
ready takes care of that, it is completely
redundant. Next, it sets up the audio, but
since our implementation doesn’t support
audio, it doesn’t matter, if it gets initial-
ized. Then, the Game Boy will start show-
ing the Nintendo logo and play the start-
up sound, which is just aesthetic. The fi-
nal step is to verify the authenticity of the
Game Boy ROM, but since this is an em-
ulator, the authenticity has already been
compromised.

4.4 Partial Conclusion

Due to previous work by “neviksti”, the
Game Boy boot-ROM is easy to obtain. Al-
though, the boot-ROM doesn’t seem to be
a necessity to the emulator. What is mostly
done, is initializing hardware, which is ei-
ther way initialized by the emulator, show
the Nintendo logo and check for counterfeit
games.

5 Cartridge

The only software the Game Boy has inter-
nally is the boot-ROM. All software run on
the Game Boy, has to be written to a car-
tridge (see figure and inserted on the
back.

Figure 12: Super Mario Bros. Deluze and Star
Wars cartiridges

5.1 Memory banking

The Game Boy has 16-bit addressing,
meaning only 64 KB of storage can be ac-
cessed. As games may need more memory
than this, the Game Boy utilizes memory
banking[28, claim 6]. The banking works
by switching small blocks of memory from
a large storage, into designated areas of a
limited memory space. Looking at the way
the RAM is partitioned, there are two dedi-
cated banking areas (see ﬁgure. The 16
KB allocated from address 4000¢¢ is dedi-
cated to ROM banking and can be switched
using the memory bank controller (MBC)
on the cartridge. A similar 8 KB area is
allocated from A000:¢ and is dedicated for
RAM banking and is also controlled by the
MBC.

5.2 Adding Functionality

The cartridge of the Game Boy is primar-
ily used for storing a game, but also has
the possibility of extending the RAM of the
Game Boy, by using banking. Some car-
tridges adds other hardware, for example
a vibrator, a camera, or sonar for locating

fish[5].

5.3 Memory Bank Controllers

As the Game Boy often utilizes banking,
but has no special opcodes for controlling
it, a special chip has to be on the circuit
board of the cartridge (see figure . This
chip is called the memory bank controller
(MBC). The MBC is connected directly to

16

the external connector of the cartridge and
redirects reads and writes to the separate
RAM and ROM chips[16]. There are many
different MBCs and they each have their
own way off doing the banking (see figure

13).

ROM
y
MBC

f

Connector

Figure 13: Internals of Game Boy cartridge

The MBCs only have a data channel;
therefore, the commands are send to the
MBC by issuing a write command to the
ROM banks — which is read-only. The write
address is used in the MBC as an opcode for
the banking and the data as argument[16].

Choosing an MBC and knowing how to
interface with it, is all up to the developer
of the software, since the Game Boy doesn’t
have an operating system.

5.3.1 Cartridge types

As the Game Boy is oblivious to the MBC,
every developer could make a custom chip,
if they needed something specific. Luck-
ily, most cartridges, we have observed, used
only one of these four different types:

ROM Only
No MBC is used. Only 32 KB ROM is
addressable.

Type 1
This MBC has two modes. A 2
MB ROM/8 KB RAM and 512 KB
ROM/32 KB RAM. Meaning, that this
MBC is used for two different car-
tridges, not that this is expected to be
switched during use[16]. The MBC de-
faults to ROM mode. Writing 0 or 1
into the 60006 — TFFF ¢ area, will set

the mode to 2 MB/8 KB or 512 KB/32
KB respectively.

Selecting a ROM bank is done by writ-
ing a 5-bit value to the 2000;6—3FFF 4
area. This select the appropriate ROM
bank at 400016 - 7FFF16 Values of 0
and 1 are both pointing to ROM bank
1, as ROM bank 0 is always address-
able from 000046 (see figure [14)).

When having 2 MB of ROM, the 5-
bit address is not sufficient to locate
the individual banks. The 6 and
7™ bit of the bank number, is se-
lected by writing a 2-bit value to the
400016 — 5FFF16 area. The MBC will
automatically combine the 5-bit and 2-
bit numbers.

When having 32 KB of RAM, selecting
a RAM bank is done by writing a 2-
bit value to the 400014 — 5FFF ¢ area.
This select the appropriate RAM bank
at A00016 — C000+¢.

Type 2
This MBC has a 256 KB ROM and 256
bytes of RAM.

The RAM available when using this
controller is quite special. The RAM
doens’t fill out the allocated address
space on the Game Boy. Aside from
this, the RAM only support storing 4-
bit values in each byte, as the upper 4
bits are always zero when read.

Type 3
This MBC has a 2 MB ROM, 32 KB
RAM and may have a Real Time Clock
(RTC).

Selecting a ROM bank is done by writ-
ing a 7-bit value to the 2000:6—3FFF 4
area. This selects the appropriate
ROM bank at 40001 —7FFF6. Values
of 0 and 1 are both pointing to ROM
bank 1.

Selecting a RAM bank is done the
same way as type 1.

To read the Real Time Clock (RTC),
the programmer can select a non-
existing RAM bank between 815 and
Cig. After this, the current state of

17

the RTC can be read from any address
of the cartridge’s RAM. The current
time can be latched, by writing 0016
followed by 0116 to any address be-
tween 600016 and TFFFq5.

5.4 Emulation

To use a real cartridge, special hardware is
required. This hardware is out of the scope
of this project. Therefore, we have used a
file containing an exact copy of the ROM
banks of a cartridge. These “ROM files”
has been dumped from physical cartridges
by emulating a physical Game Boy, which
tells the MBC to read out every byte in
sequence.

Our implementation loads a ROM file
into a Python list in 16 KB blocks. These
blocks are used as banks, to be swapped
into the emulator.

All blocks are read into the computer’s
RAM; although, they are read-only to the
Game Boy. This restriction is imple-
mented in the Cartridge class by defining
the special functions __setitem__(self,
address, value) and __getitem_ _(self,
address).

We determine the MBC by reading ad-
dress 014716 of the first ROM bank. The
value of this byte is used as index, in
a lookup table, to find the corresponding
MBC specifications.

The MBC specifications are implemented
for MBC Type 1 and partially for MBC
Type 3.

After the MBC is determined, we initial-
ize the required RAM.

The cartridge is not directly accessible
to the CPU. The CPU accesses the general
RAM class. The RAM class redirects the calls
to the cartridge, if the address points into
the memory intervals of the cartridge.

5.5 Partial Conclusion

All software on the Game Boy has to come
from the cartridge. Some cartridges give
additional functionalities to the Game Boy
and can have different MBCs. A lot of car-
tridges uses the same MBCs and the emu-
lation of the cartridges is working with the

MBC type 1.

Banking extends the possibilities for
games for the Game boy considerably. Al-
though, each bank of the cartridge is just 16
KB, it is still possible to store games with
a total size of 2 MB.

6 Random Access Memory

The CPU chosen for the Game Boy has a
different memory composition, than a mod-
ern computer. The LR35902 has a 16-bit
address space, which was a substantial con-
straint even at production time. Most of
the design of the RAM and cartridge, is
about solving these constraints.

6.1 Overview

The address space of the LR35902 is quite
limited. With 16-bit address space, it is
only possible to allocate 64 KB[H This is
a significant constraint, as some popular
games are in the range of 512 KB to 2
MBI[6].

The engineers at Nintendo chose to split
the RAM into groups, which are logically
related to each other. First, memory allo-
cated from the cartridge. Second, internal
RAM of the Game Boy. Third, special ad-
dresses for input, output, sound, communi-
cation, interrupts etc (see figure .

6.2 Banking

Banking is used in the Game Boy to better
utilize the limited address space. A spe-
cific interval of the address space is allo-
cated as access to a single memory bank
(see “Switchable ROM Bank” on figure[14)).
The bank can be switched between one of
multiple banks available on the cartridge.
Only one bank can be selected at once,
therefore, the programmer has to manage
and control the memory banks manually.
The memory banking will be discussed in
further detail in the “Cartridge” section.

1916 — 65.536 bytes

18

Internal Cartridge

Cartridge ROM RAM RAM
16KB 16KB 8KB 8KB
Switch
Switchable Video able
ROMbank #0 | oM bank RAM | | RAM
bank
S S S
8 8 8 8
Internal RAM Special I/0
8KB 8KB 160B 96B 76B 52B 127B 1B
w m m =3
ENNE 3 |3
= T |»|T 3
2 Z1815 1515
Echo 3 = g. s (3 l:n~
Internal of T S1=15 R H
» RAM |internal| 3 | |8 |5 (8 |5 |S
RAM = | |2 |02 |2 |3
[S |=|= |
3 g |z |9 Q
o - |~ —_ [7)
2|15 o) g

0000X0|
0003%0
0034X0!
0v34X0|
0044%0
Op44%0|
0844%0
4444%0!

Figure 14: The RAM layout of the Game Boy

6.3 Video RAM

When a game wants to display a tileﬂ it
has to be loaded from the cartridge, into
the area for tile data (800016 to 98001¢).
Depending on the placement, the tile will
be available for the first, second, or both
Tile Views (see figure [16). This is done to
increase the utilization of memory, as ele-
ments might occur in both views at once.

Read more details about the video RAM
in section [7l

6.4 Special addresses

Almost every setting of the Game Boy is set
in the last addresses of the RAM. These are
reserved for setting up interrupts, timers,
sound, and parameters related to drawing

the display (see figure [L5).

(Ld) indur Jesn
(d1) sBeyd4 dnueyj
0001
V1S
A0S
X0s
A
oA1
vna
dog
0490
1dg0
AM
XM
INOH 100q 8|gesia

5
il
&
g

004:%0|

Figure 15: Addresses of special registers

2See section [7] about the display, for a defintion
of “tile”

The list is very long and will not be de-
scribed, in detail, in this section.

6.5 Emulation

When the emulator starts up, the RAM ini-
tializes the internal RAM as seen in figure
04 The RAM areas are initialized with
zero written to all bytes. This is not part
of our implementation, but a part of how
Python manages memory.

On the real Game Boy, the RAM con-
tains random values. This is caused by the
transistors being in an unstable state before
being turned on completely. When they are
turned on, and ready for use, they remain
to show the value they randomly had before
being stable [I7, Power Up Sequence].

Access to the RAM class is imple-
mented by defining the special functions
__setitem__(self, address, value) and
__getitem__(self, address). In case the
address is not pointing to the RAM, but to
either the Cartridge or a special register,
the call is redirected to the correct class.

This could easily be emulated, by gener-
ating random numbers for all the cells in
the RAM. We have chosen not to do this,
to have a better overview when debugging.
Not doing this, also allows for more deter-
ministic errors, in cases where the wrong
memory is accessed.

6.6 Partial conclusion

Although, the RAM is a central part of the
operation of the Game Boy and this emula-
tor, it has a fairly simple implementation.

The address space of the Game Boy is
quite limited, but the extensive use of bank-
ing allows the Game Boy to do much more
complex tasks.

For increased flexibility, the RAM han-
dles all of the memory accesses for the CPU,
but redirects some tasks to the cartridge
and other components. This moves the
complexity into specialized classes.

Although, the Game Boy has memory,
which is initialized with random data, this
is not a necessity to emulate. That could
be implemented to increase correctness, but
will also make debugging more complex.

7 Display

The Game Boy draws graphics onto the
built-in LCD display. The graphics are
2-dimensional and constructed through
“tiles”. Tiles can be placed side-by-side
through 2 views: Background and window.
Tiles can be selected to work as sprites with
transparency, using a color key. Sprites are
generally used for objects moving freely on
the screen.

KB 4KB
256 tiles 256 tiles 1KB 1KB 1608
32x32 tiles 32x32 tiles 40 sprites

T T

I \

| |

| |

| [)
Tie Qatat | Tie | Tie popite

| Tile Data 2 View 1 View 2 M

| 1 lemory

| |

\ \

I \

I |

0008%0
0088%0
0006%0
0086%0
0006%0
000v*0
0034%0
0v3adxo

Figure 16: Allocation of video RAM

7.1 Tiles

Tiles are used in 2D-graphics and can
greatly improve performance. The concept
of tiles is rather simple. Instead of keeping
the complete scene in a bitmap, you have
a map of references to sub-images. The
idea is to reuse the sub-images to minimize
memory consumption. These sub-images
could be parts to construct the background
or terrain (grass, trees, water etc.). An ex-
ample of use of tiles can be seen in figure

vl

A W N =

Figure 17: Illustration of wrapping and loading
ahead

An alternative would be to have a frame
buffer. This would require 5,760 bytesE| for

3160 pixels * 144 pixels * 2 bit colors/8 bits *

the Game Boy and compared to the 10 KB
allocated to tiles and tile views, this would
be an expansion of a little more than a per-
cent. On the Game Boy, the tiles are of
16 bytes each. This would mean, that any
change of a tile on the display, would re-
quire to move 16 bytes, rather than a single
byte referencing a tile. Although, having
a screen buffer will allow the programmer
to make single-pixel drawing, and therefore
having greater flexibility. It would also al-
low for much larger tile maps, as they do
not have to be stored in the VRAM.

By having tiles instead, you still have to
render the frame, but it is not necessary
to store more than one horizontal line at
a time, since they are continuously send to
the LCD controller.

This also gives a great advantage, when
rendering games, that scroll from side to
side, since you only have to extend the tiles
in a given direction, but more on that in

section [7.7)

7.2 Tile Data

To conserve memory, the Game Boy is de-
signed to reuse as much memory as pos-
sible. At the time the Game Boy was de-
signed, it wasn’t feasible to store a complete
screen buffer for each of the background,
overlay and moving characters. Therefore,
to show any graphics on the screen, it has
to be loaded from the ROM of the cartridge
into a limited RAM area as a tile.

The tiles are of 8 x 8 pixels and have
a 2-bit color palette. The tiles have to
be stored in the area 80001 — 900016 or
880016 — 98001, as seen in figure [28, Fig.
13]. The area is chosen from the LCDC reg-
ister, as described in

The RAM areas allow for a total of
384 tiles (see figure [18). 128 of the tiles
are overlapping between the two tile ar-
eas. This makes it possible to use common
tiles in the “background”, “window” and
as sprites. This overlap is made to better
utilize the limited RAM.

2 views = 5, 760 bytes

20

Figure 18: Showing grid of tiles from Super
Mario Land

7.3 Tile Views

The Game Boy has two static views, each
spanning 32 x 32 tiles. These views are used
as a screen buffer and spans each a total of
256 x 256 pixels.

The background tile view can be scrolled
behind the window and sprites. The
scrolling can be used to make a smooth
transition in the game, for example when
the player is moving towards the edge of
the screen. The background tile view will
always be behind the window and sprites.

Figure 19: Background tile view from Super
Mario Land. The black frame is showing the
view port.

The position of window view can be set
using WX and WY with single-pixel precision
(see details in [7.6). The window is shown
in front of the background, but can both be
in front or behind the sprites. The tiles on
the window are not transparent, and will
hide the background underneath[17].

Depending on the settings in the LCDC
register, the tile views can show data from
one of two tile data areas (see [7.6). The
first data area is index from 0 to 255 and the
second data area is index from —128 to 127.
The choice of first signed, then unsigned
indexing, is a clever idea from the designers.

When a programmer is using the first

area, the indexes of tiles are simply an 8-bit
numbering. Then, let us imagine, that the
second area was indexed from 0 to 255 as
well. When the programmer changes to the
second tile area, all of the indexes for the
common tiles have now shifted by 128 tiles.
This means, all of the common indexes has
to be subtracted by 128.

Instead of this, the second tile area uses
signed 8-bit integers. This has the side-
effect, that common tiles keep their binary
value, but are interpreted as negative num-

bers (see figure [20)).

0x00

0 D
First data area
0x80
128 or -128 U
Common data area
0x00
-

Second data area

Figure 20: Illustration of how signed and un-
signed numbers are used when indexing the tile
data

7.4 Viewport

The Game Boy has a built-in LCD screen
of 160 x 144 pixels. The two tile views are
each larger than the screen area; therefore,
the programmer has to choose a section to
show on the screen. This is defined by the
two registers SCY and SCX, each respectively
located at FF42;4 and FF43,¢ [28, Fig. 14].
A typical Game Boy game doesn’t show
the complete game area at once. Only the
area immediately adjacent to the player is
shown. The limited viewport allows the
programmer to load ahead of the player.
If the viewport is located closer, than 160
pixels to the right side or closer than 144
pixels to the bottom, the view port will
wrap around the edge of the tile view to the
opposite side (see figure . Meaning, the
programmer can avoid moving tiles, that
are already on the screen, and instead only

21

256 pixels

(SCX,SCY)
.

256 pixels
sfexid

160 pixels

Figure 21: Viewport of the screen. SCX and SCY
defines the location on the tile view

copy new tiles in.

Figure 22: Illustration of wrapping and loading
ahead

We observed, that Pokémon Blue will
load the tiles, just outside the viewport,
when the player moves in that direction.
This dynamic loading, is most likely be-
cause of the very large game area.

Another scenario, would be a game that
only has a 256 x 256 pixel game area. This
could all be loaded at start-up and save
time on loading during game play.

Generally speaking, it is recommended to
use the background for the “game area”,
window for user-interface and sprites for
moving objects.

In Pokémon, this wasn’t possible with
the graphical elements they wanted. In
Pokémon they wanted an user interface,
that partially overlapped the background
(see figure 23). Since the window has no
alpha channel or color key, they had to do
something else. They did this by copying

X

PLAYER Ad80000
BADGES o
POk EDEX >

FTES|| IME O oD

[T P T IO
=

Flould uyou | ike to

ﬁSﬁUE thae game =

i

Figure 23: Screenshot of Pokémon Blue with
overlapping window

the current background view to the win-
dow view and moving the window in front
of the background. This makes a static
screenshot, that can be manipulated with.
They have then drawn the menu on top of
the screenshot. When the player exits the
menu, the window view would simply be
moved out of the view.

7.5 Sprites

All tiles are restricted to be drawn side-by-
side in a grid. If this was the only way
to draw graphics on the screen, it would
become a big challenge to show any form of
moving players or animations.

Luckily, the Game Boy also had a hard-
ware sprite engine. A tile can be referenced
in the Object Attribute Memory (OAM)
(see figure and become a sprite.

Sprites sacrifices one of the 4 colors in its
palette in exchange for transparency. This
means, the sprite can be drawn on top of
the tile views in non-rectangular shapes.
The sprites also have the advantage of be-
ing moved around with 1-pixel accuracy
(tiles being 8-pixel accuracy).

22

The sprites can be referenced in either
8 x 8 pixels or 8 x 16 pixels. The hardware
supports up to 40 sprites in either 8 x 8
pixels or 8 x 16 pixels. The sprites are kept
in Object Attribute Memory (OAM). The
sprites are not actually stored in the OAM,
but rather referenced using pointers to the
tile datal]20].

Although, only 10 sprites can be shown
on any horizontal line at once. If more than
10 sprites are to be show on a single hor-
izontal line, only the 10 with the lowest
memory addresses will be shown.

7.5.1 DMA to OAM

Programmers may want to switch between
sprite tables in different scenes, but due to
the limited memory, it can be necessary to
do this quite often. In order to speed up
this otherwise time consuming process, the
Game Boy has special hardware to acceler-
ate this task. The process is called a Direct
Memory Address (DMA) transfer. It works
by writing to address FF46,¢ with a prefix
for the start address. The “source” is an in-
terval from XX00i6 — XX9F 15, where X X
is the byte written to FF46:4. This will
initialize the transfer process and copies
all bytes from source to destination. The
destination is fixed to FE0014 — FE9F 5.
The transfer takes 160 microseconds and
after that, the Game Boy can use the new
sprites for drawing. While transferring, the
Game Boy can only access memory from
FF80:16 — FFFE 5. Reading or writing to
other addresses, in the mean time, will
cause undefined behaviour.

7.6 Registers

For controlling the display, the Game Boy
has an array of special registers. These reg-
isters, are not like the registers in the CPU,
but regular memory in the main memory
bank, accessible by the display driver.

7.6.1 LCD Display

The LCD Display Register, on address
FF40:6, controls, if the display and tile
views are individually enabled or disabled.
It also controls where each view loads tiles

from[28] Fig. 15A].

Bit | Purpose Reset Set
0 Background Display | Off On
1 Sprite Display Off On
2 Sprite size 8x8 8 x 16
3 Background tile view | View 1 | View 2
4 Background tile data | Area 2 | Area 1
5 Window display Off On
6 Window tile view View 1 | View 2
7 LCD Enable Off On

7.6.2 LCD Status

The LCD Status (STAT) register, on
address FF41y4, are like the LCD Dis-
play register, but “Display Mode” spans
over 2 bits and can be switched be-
tween 4 modes. Besides Display Mode,
the LCD Status register are single-bit-
switches to turn off and on[28 Fig. 15B].

Bit | Purpose Value | Meaning
00 Mode 0
. 01 Mode 1
1-0 | Display mode 10 Mode 2
11 Mode 3
. 0 LYC # LY
2 Coincidence flag 1 LYC = LY
Reset | Set
3 Mode O interrupt | Off On
4 Mode 1 interrupt | Off On
5 Mode 2 interrupt | Off On
6 LYC = LY inter- | Off On
rupt
7 Unused

7.6.3 LCD Position and Scrolling

These registers are located from FF424 to
FF4B14 and are illustrated in the original
Game Boy patent[28, Fig. 15C-K]. All
registers are 8 bits and used by software to
control the video driver.

Name | Description

SCY Scroll Y-coordinate

SCX Scroll X-coordinate

LY LCD Y-coordinate

LYC LY Compare

BGP Background color palette
0BPO | 1. Sprite color palette
0BP1 | 2. Sprite color palette
WY Window X-coordinate
WX Window Y-coordinate

23

SCY and SCX defines the X- and Y-
coordinate of the background tile view.
This can be used for special effects and
doesn’t affect sprites or window tile
view.[I7, LCD Position and Scrolling].

LY indicates the line, that is about to be
drawn, and setting LYC can enable an in-
terrupt, when LY and LYC are equal. If the
condition is met, a flag in the STAT register
is set.

BGP is the color palette for the back-
ground and window tile view. The color
palette defines up to 4 different colors and
defines the colors of the tiles. Each pixel of
the tiles reference a color in the palette. As
a result of this, you can change the color
dynamically to create effects. An example
of this is to increment the darkness of each
color in the palette to achieve a fade-out
effect.

The sprites are split between two color
palettes, OBPO and OBP1. They work the
same way as BGP, but the lower two bits
are not available, because they are reserved
as transparent.

WY and WX defines the X- and Y-
coordinate of the window tile view[I7, LCD
Position and Scrolling].

7.7 LCD

In modern computer graphics, a bitmap is
rendered in memory and is stored in a mem-
ory buffer (often even a double buffer) until
the monitor is ready for a refresh. The re-
fresh is then done by transferring the final
image to the screen from the buffer.

On the Game Boy, this single buffer,
would require 57.6% of the current video
memory. Therefore, the rendering of the
display, is performed one line at a time.
This is called “scanline rendering”[27].
This type of rendering means, that the
display only needs a buffer equal to the
amount of either the horizontal or vertical
pixels.

The graphics are rendered from top to
bottom in a loop like this:

e Load row LY of the background tile
view to the line buffer.

e Overwrite the line buffer with row LY
from the window tile view.

e Sprite engine generates a 1-pixel sec-
tion of the sprites, where they intersect
LY and overwrites the line buffer with
this.

The background, window, and sprites are
merged together and we end up with a sin-
gle line for background, window and sprites.
Generating 144 of these lines, while incre-
menting LY, will result in one frame on the

LCD.

7.8 Emulation

The Game Boy has a color palette of only 4
shades of grey. A modern computer has 24-
bit color palette arranged in 1 byte for each
of the colors: Red, Green and Blue (RGB).
This poses an incompatibility of using the
Game Boy graphics. Therefore, we have
chosen 4 shades of grey in RGB, that we
will use for conversion.

Apart from the color palette, the way the
data is arranged, is also different.

A traditional RGB color is arranged as an
array of 3 bytes, where each byte represent
the intensity of each sub-pixel.

The Game Boy has the pixel’s color code
arranged across two bytes; meaning, if you
were to load 8 pixels on the screen, you
would load in 2 bytes — giving 2 bits per
pixel. The leftmost of the 8 pixels would
get its color from the 8 bit of the first byte
and the 8™ bit of the second byte. The bit
from the first byte is used as the most sig-
nificant bit of the color code. These 2 bits
represents the grey shade of 1 pixel (see fig-
ure .

Because of this, we will have to convert
the colors from the Game Boy, before we
can draw it on the screen. To do this, we
have made 3 buffers as NumPy arrays of
integers: Tile Map, Tile View 1 and Tile
View 2. For every frame, we run through all
the bytes in the Tile Map of the Game Boy
and transfer them into a NumPy buffer.
For the tile views, we copy blocks of 8 x 8
pixels from the Tile Map’s NumPy buffer
into the referenced places in the tile views.

24

24-bit RGB
Red[1]1]1]1]o]1]o]1]

Green|1]o]o[1]o]o[1]0]

Pixel of orange

Blue[oJo[1]1]1]1]1]0]

2-bit Game Boy
Byte1{1|1]0[0]0O|1]|0}A1

Byte2| 1[0 0|1 10141

e mEe
Figure 2/: 24-bit Red, Green, Blue (RGB) com-
pared to 2-bit grey-scale for the Game Boy

There is no form of caching or check to
only blit the areas that have changed. We
chose to extend the emulator instead of op-
timizing this, therefore, it would be a good
place to optimize. A crude test shows a
4x performance boost, when all SDL con-
versions are disabled. The conversions has
to take place, of course, but it still shows
how much performance is lost proportional
to the rest of the emulator.

The Sprite buffer has, at the time of writ-
ing, yet to be implemented.

When the buffers for tile views and
sprites are created in SDL, they can be
copied into the final image to show on the
display of the emulator (see figure .

Background Window

~6

*—

Sprites

*—

Text box

R =

Text box

Text box

Figure 25: The three graphic layers

7.9 Partial conclusion

The Game Boy’s use of tiles is an efficient
way of getting simple 2-dimensional graph-
ics on a relatively simple processor. The use

of tile views combined with sprites makes
a fast and flexible graphics processor. The
fast and precise sprites compensates for the
static and limited tile grids.

Because of the interrupt-system of the
Game Boy, it is possible to refresh and
make quick changes to sprites while render-
ing the data on screen.

The sprite engine and tile views are not
CPU-demanding and free up alot of re-
sources in the Game Boy. Because of the
difference in architecture from the host sys-
tem, all these features has to be emulated
in software and takes up alot of resources.
The drawing routines are a place where op-
timizations will possibly have a high per-
formance gain.

8 Interaction

The joypad of the Game Boy has 4 stan-
dard buttons (start, select, A, and B) and
4 directional buttons (up, down, left, and
right). They are represented in the mem-
ory address FF00i6 in an 8-bit system as
figure [20] illustrates.

VDD P14 P15
T (D Right (M A
PIO—— N
P11 i /T Left /T\ B
: V N
P12 i T\YpP /T Select
: N N
P13 i /1 Down /T Start
N N

Figure 26: Interaction illustration. Replica of
Nintendo’s patent from 1990.[28, Fig. 8]

The 8-bit system is as follows:

25

Bit | Name | Description

7 Always set

6 Always set

5 P15 standard buttons
4 P14 directional buttons
3 P13 down or start

2 P12 up or select

1 P11 left or B

0 P10 right or A

The bits from 0-3 are directional but-
tons or standard buttons. When bit 4 is
selected (signaled by reset), the directional
buttons are probed and when bit 5 is
selected, the standard buttons are probed.
It is up to the programmer, to ask the
Game Boy for either directional buttons or
standard buttons.

A reset bit indicates that the player
pressed a button. A case could be, if the
player wants to go left in a game. The pro-
grammer would probe the controller and
ask for the directional buttons. The con-
troller would then return the byte shown
below:

left = 111011015

Bit 4 indicated, that the programmer
asked for a directional button and bit 1 in-
dicates, that the left button was pressed.
It is possible for the user to use multiple
buttons at the same time. It will require
two probes to get standard and directional
buttons.

8.1 Emulation

The implementation of this has been done
by making a class named Interaction.
This class has three functions and a stack.
One of the functions is for appending key
presses to the stack. The stack is used to
save all key presses between each frame. In
the end of each frame, there is used a flush
function, which flushes the stack and the
unused key presses are deleted. The pull
function analyzes all keys in the stack by
the 8-bit system, as described, and returns
an 8-bit number. The returned byte indi-
cates all key presses from the stack either
for the directional buttons or the standard
buttons.

8.2 Partial conclusion

The interaction has been emulated with
success, by using a stack. The interaction
illustration from Nintendo’s patent was a
big help with the understanding and im-
plementation of this section. From the 8-
bit system it has been easy to analyzes key
presses with the pull function.

9 Verifying solution

When designing software, it is hard to proof
the correctness of all functions, just by ob-
serving it in action. Especially, in CPU
emulation, we have seen, even the slight-
est variations from the real CPU, can pro-
duce largely different outcomes. There has
been made some tools to ease the debugging
with tile maps and tile views. Additionally,
unit test has been made, which will help us
to prove the correctness of the implementa-
tion. This would also ensure, that side ef-
fects caused by further development, would
be caught instantly.

9.1 Debugging

Besides unittests, we implemented a sim-
ple routine to output the program counter
and registers for each instruction. We
implemented the same routine on a com-
petitive emulator called Gearboy[30]. We
would then search for differences in execu-
tion states and in that way locate bugs in
our code. The Gearboy is not guaranteed
to be correct either, but it would pin-point
differences and give us a hint on where to
look.

If the CPU encounters a situation with
undefined behaviour (ideally a software bug
in the cartridge), it would dump the entire
memory, CPU state, key presses, and save
all SDL buffers as BMP.

In order to debug the visual appear-
ance, the PyBoy implementation features
a “debug mode”, where both tile views and
tile maps are displayed separately from the
game. This gives an overview of the loaded
graphics while running the game.

Since the Game Boy can change tile off-
set and have different ways of reading the

26

. (AR LEHNG .

©1933 Nintendo

@ 108%

0123356 FGHIMEKL TUUE
MElY. (W, 2. 3
e T " SUPER |
LMARIOLAND
Dl!ﬂﬂ?s??QﬂBDDEFEHI KLMNOPGRS T

)

= W e S

Top- o
START

®123% HMintendo

Figure 27: Screenshot of PyBoy running in de-
bug mode

tile data, bugs can easily occur. In this ex-
ample, the offset was not set correctly, and
all sprites were shifted (28). Comparing

wnlit Wt Wk v

F“I‘IE &'& “I‘“.
E g

a 1
Eﬂﬂﬂﬂﬂﬂﬂﬂaﬂﬂﬂﬂﬂﬂﬂﬂﬂ%
S

Figure 28: Screenshot of PyBoy with wrong tile
offset

states with the Gearboy would not show
this kind of errors, since the bug was an
error in the SDL implementation.

9.2 Unit test
9.2.1 CPU

Testing the CPU has proven to be a neces-
sity in making the emulator. It is realis-
tically impossible to find existing software,
that can proof the correctness of all opera-
tions.

Normally, when running software, it can
be obvious where the errors are, from a
stack trace. But at the hardware level of
the Game Boy, there exist no errors, nor
stack traces. Most operations can be im-

plemented completely wrong, but still let
the CPU continue running.

An example could be an ALU operation,
that didn’t set the carry flag. This would
cause no visible errors, as the software will
most likely still run, but the sematics of the
software has changed.

An issue, we observed, in this project,
was the operation LDD (HL), A, which
loaded the value of register A into the mem-
ory address of the register pair HL and, im-
portantly, decremented the value of HL. In
our early implementation, LDD wrongfully
incremented HL, instead.

A loop in the boot-ROM runs LDD until
the 8th bit of H turns to zero. This happens
in both cases, but in our version due of an
overflow, and not because of subtraction, in
register H. This made it seem like the code
ran fine, as it continued.

Another example, found in the boot-
ROM, was a missing 8-bit mask. Most
ALU-operations end with an 8-bit mask.
This was overseen, and when the CP
operation checked, if register A was 0, it
actually compared 5006 to 0.

Testing
The tests of the CPU has been done
by creating unit tests for every opcode.
All tests are checking the mathematical
correctness and flags. For operations like
jump and load, the tests would check, if it
jumped or loaded to the correct address or
register. For operations, which deals with
the stack, the tests verifies that push and
pop are implemented correctly, in respect
to the stored values and endianness.
Testings all possible states of the CPU, is
practically impossible, but a thorough test
should be able to ensure an accurate im-
plementation, defined by the requirements
specification. We can conclude, that our
unittests doesn’t suffice, since running a
test-ROM reveals multiple errors. This
is probably due to corner-cases or inade-
quately documented features.

9.2.2 Display

Testing the display is in common cases very
simple. Compared to the CPU, a wrong-

27

fully implemented part of the display will
not have consequences for the Game Boy.

If the CPU calculates something wrong,
it will keep working with this error, and
in worst case crash the Game Boy. If the
display shows something it shouldn’t, or
something is missing, it would possibly look
wrong, but in most cases not have perma-
nent damage, as it will be overwritten at
some point. The point here being, that the
display only shows whatever the CPU has
made it show, but the display will not alter
the data.

The display has registers that show, how
far it is in drawing on the screen and when
it is safe to change the data for the display.
If these are not set, it will possibly lock up
a game, that waits for a register to become
a specific value. This is often seen, when a
game spinlocks for the VBLANK interrupt,
by comparing memory address FF44:4 to
be above or equal to 901¢.

Testing

The tests of the display has been done by
comparing the visual result on the display
with other emulators. The position of the
tiles has been measured and by comparing
to other emulators, the tiles has been
determined to be correctly selected.

9.2.3 RAM

Most of the RAM can be statically
tested, to see if a value can be stored
and read. It’s also important to check,
that the parts of the address space,
that isn’t actually located in the RAM,
is forwarded to the boot-ROM or cartridge.

Testing

Testing of the RAM has not been done
formally, because we have not experienced
any problems with the implementation yet.
The RAM is tested indirectly by the unit
tests of the CPU, as the opcodes uses the
RAM.

9.2.4 Cartridge

The cartridge has mostly read-only mem-
ory, which has to be checked to not be

writable.

The MBCs has to be checked, to be sure,
if they can change correctly and doesn’t
work in ways the Game Boy can’t. An
example of this could be to have ROM-
bank 0 accessible at both 000014 — 400014
and 400016 — 800016. In this example,
the Game Boy will allocate ROM-bank
1 to 400016 — 800016, even though the
programmer asked for bank 0. This is an
implementation detail of the Game Boy,
which has to be accounted for.

Testing

Testing the cartridges has not been done
because we have not experienced any
problems with the implementation yet. A
good test would be to write some software,
which go though the implemented MBCs
and check that the read-only memory is
not writable. The data from the emulated
cartridge can be verified using a checksum.

9.3 Test-ROMs

For validating our emulation, we have
found Blargg’s tests, which are designed
to validate Game Boy emulators. These
tests are detailed and even popular emu-
lators such as Gearboy, no$gmb, and VGB
does not pass all of them, even though, they
work fine with many games. Blargg’s tests
goes through CPU, sound, memory timing,
instruction timing, and OAM[2].

Our implementation did not pass any of
these tests, when the boot ROM was run-
ning successfully. Only after debugging,
some of the tests passed and the emulator
can now pass the tests for 10-bit operations,
jumps, and register loads.

Test results are in Appendix [H]

9.4 Partial Conclusion

Comparing CPU states has proved to be
very effective. The same result could have
been achieved without it, but it speed up
the debugging process substantially. A cor-
rectly implemented unit test would have
given the same result, but, with Gearboy,
we were able to locate overseen features,
that were not addressed in the unittest.

28

The unittests has helped bringing the
small and important details up, as these
can take a long time to backtrace. This
made sure, we could keep progressing in
the development and get closer to running
a game. Only a few of the tests from
the test-ROMs succeeded, but this does
not mean that the implementation is com-
pletely wrong and will still work in a subset
of programs.

10 Performance

10.1 Finding optimal datastru-

ture

This sections was found to be necessary
when the former implementation was too
slow compared to the Game Boy. The time
for each frame was 253 milliseconds and
made the emulation too slow compared to
the Game Boy, which shows frames at an
interval of 16.7 milliseconds (see Appendix
[F] for test results). This led to changes, that
improved code performance substantially.

10.1.1 Test purpose

Our initial implementation of the opcode
table, was very time consuming and we
found, that lookups took the majority of
the execution time of each instruction. The
initial implementation had an if-statement
for each type of instruction and it would
have to iterate through all if-statements un-
til it found the right operation. Instead,
we would implement a lookup table using a
list, since we already knew the integer value
of the opcode.

The old implementation would look up
each opcode using an if-case like this:

if opcodes.NOP == inst.operation:

elif opcodes.EI inst.operation:

elif opcodes.LD inst.operation:

By having all opcodes in a list, we would
potentially gain a penalty in memory usage,
due to repetition. Since most of the op-
codes look alike, with only minor changes,

we would have the same function writ-
ten multiple times. We would compensate
this by making selected functions generic
and referencing them by a function pointer.
The new implementation was drafted like
this:

opcode = self.bootROM[pc]
operation = opcodes.opcodes [opcode]

Using the PC as an index in the boot-ROM
and fetching the next instruction value.
The next line would find the opcode in the
op-table.

10.1.2 Test setup

The test would benchmark the candidates
in the same scenarios, but with variable ta-
ble sizes. We were interested in finding the
fastest static lookup table, but also when
to use different tables. Our hypothesis was,
that every candidate would have certain ad-
vantages in memory consumption, look-up
time or initialization time. Our main con-
cern was look-up time, at this point, so ini-
tialization time was not in the scope of this
test, nor was memory consumption.

The test would measure the lookup time
of each list implementation with lengths of
2, 4, 8, 16, 32, 64, 128, 256, and 512 el-
For each test, we would gener-
ate a list of integers imitating opcodes and
generate lists of dummy functions imitating
the Python implementation of the CPU in-
structions.

The test would look up all elements from
0 to n, where n is the length of the list.
This means, that all opcodes will be looked
up once for each test. Each test would
be repeated 30.000 times to minimize noise
from the operating system and other appli-
cations on the test machine. Then, an aver-
age of all 30.000 tests would be calculated
and used for the final result.

ements.

10.1.3 Datatypes

We wanted to test the following datatypes
and techniques:

1. NumPy Array

2. Lists (Python built-in)

29

3. Tuples (Python built-in)
4. If-statements

NumPy Arrays are arranged like C-
arrays, which means, that lookup is done
by calculating the byte-offset from the be-
ginning of the array. This gives an expected
worst-case of O(1)[2I]. Python lists are a
combination of linked lists and C-arrays. It
will dynamically allocated more space to
the list when needed, but it still manages
to deliver a O(1) look up time like in C-
arrays. The reallocation isn’t a major con-
cern in this context, since this will only af-
fect initialization[10].

Python tuples are meant to imitate C-
structs by not being mutable. The perfor-
mance difference in tuples and lists are not
documented, which is also one of reasons
for this test[22].

The if-statements are expected to be the
slowest solution, since a lookup have a

worst case of O(n), where the other can-
didates have O(1).

10.1.4 Test results

NumPy Array List Tuple If-statements

1.00
0.75
0.50
0.25

0.00

2 4 8 16 32 64 128 256 512

Figure 29: Comparison of average lookup time
for NumPy Arrays, Python lists, Python tuples
and If-statements (lower is better)

This test shows that if-statements are
clearly outperformed in lookup time by the
other candidates. With a peak of 27.29
seconds, it doesn’t even come close to the
others. It shows a close competition be-
tween the three list implementations. How-
ever, the built-in lists have a slightly lower
lookup time, than the two others.

The test result may look like the lookup
time increased exponentially, but that is
due to the fact that the tested length in-
creased exponentially and the tests be-
came longer proportionally to the increased
length.

NumPy Array List Tuple

10.0000
1.0000
0.1000

0.0100

2 4 8 16 32 64 128 256 512

Figure 30: Comparison of average lookup time
for NumPy Arrays, Python lists, and Python
tuples (lower is better)

If we look at the data logarithmically, in-
stead, we will see a linear growth, which
supports the claim, that the tests have in-
creasing length. This verifies the time com-
plexity to be O(1).

10.2 Interpreter vs. JIT
10.2.1 Test purpose

With the initial setup, we used the Python
interpreter developed by Python Software
Foundation. = We found, that this in-
terpreter wasn’t able to produce enough
Frames Per Second (FPS) to run the emu-
lator. We optimized the code as described
previously in section although, this
didn’t yield sufficient results. The FPS was
still below the threshold.

We searched for other Python imple-
mentation and found “PyPy”, that adver-
tised improved performance for repetitive
operations[II]. Since our implementation
will rerun the same Fetch-Decode-Execute
cycle, once for every instruction in the
ROM, our case would fit this description
quite well.

Since PyPy is just another Python imple-
mentation, no code had to be rewritten and
the Python implementations still remain in-
terchangeable.

30

10.2.2 Test setup

We needed a test to compare the two
Python implementations and decided the
boot-ROM would represent a suitable test,
since it has a clear start and stop point
and runs several loops. We could have
constructed a test-ROM, that would run
each instruction or the most common ones,
but the boot-ROM seemed like a better
real-world example. The boot-ROM has
preparation-loops, while showing an ani-
mation on-screen at 60 FPS (max speed).
Also, the boot-ROM doesn’t utilize inter-
rupts — only spinlocks. This means, that
the emulators never reach an idle state, by
calling HALT or STOP.

10.2.3 Results

The results are shown in figure The
delta time for each frame rendered over a
total of 355 frames. The dashed line shows
the 60 FPS barrier, at which the Game Boy
runs. The data is the average for three runs
each.

The graph shows an initial spike in
time, which normalizes within 5-10 frames.
Python and PyPy both have the same spike
to begin with, but PyPy will decrease its
execution time dramatically. Our hypote-
sis is, that PyPy needs a few runs in or-
der to start the optimization, but even with
PyPy’s relative speed to Python, there still
is a quick fluctuation. When investigating
the boot-ROM, we found, that the first step
is to zero the VRAM, which spans 8192
bytes and is performed by a routine of 48
clock cycles.

8192 bytes * 48 cycles = 393216 cycles

The CPU runs at an average of 4194304
Hz[4], which means, we can calculate the
expected time frame for the zeroing routine.

393216 cycles
4194304 Hz

0.0938 seconds
0.01667 seconds per frame

= 0.0938 seconds

= 5.625 frames

From the execution, we estimated 5-10
frames, which fits well with the expected
time of 5.625 frames. Notice, that the spike
is above the 60 FPS line, this will make the
5.625 frames seem longer in reality, but the
emulated game won’t notice.

Performance comparison between Python and Pypy
0 FPS

03 Python Pypy =" 6

Seconds per frame
o o
o o I
o Ny &

o

o
=)
o

[50 100 150 200 250 300 350
Frames

Figure 31: Render time for each frame in the
boot-ROM. See Appendim@for greater detail

After the preparation of the VRAM, the
Game Boy is made busy with spin locks,
which are easily optimized by PyPy. As
seen in the graph, the Python interpreter
is running behind, and will have to run 12
times faster (0.200 seconds/% = 12), just
to keep the timing — leaving no head room.

10.2.4 Test enviorment

The tests were performed on a MacBook
Pro (Late 2013) with a dual-core 2.4 GHz
Intel Core i5 and 8 GB 1600 MHz DDR3
RAM. The test machine was rebooted be-
fore the test, and left idle for 300 seconds
after reboot to make sure the OS had fin-
ished loading.

10.3 Partial conclusion

The implementation will use Python’s
built-in lists due to the better performance
in lookup time, but we found, that the lists
are only faster for tables above 8 elements.
The full table is located in appendix [D} It is
noteworthy, that both lists and tuples were
faster than NumPy Arrays in every test-
case.

PyPy made it possible to achieve desired
performance without optimizing the code
extensively, which made it possible for us

31

to spend more time on extending the emu-
lators functionality. Even with heavily op-
timized code, we might not have been able
to accomplish satisfying performance with
the standard Python interpreter.

11 Conclusion

The Game Boy emulator has a structure, where each class represents its real counter part.
This gives a more natural flow in the code, and keeps a logical separation of the classes. The
implementation is working on a subset of programs. An example of this is the boot-ROM,
which runs without any errors. The cartridge dump for Super Mario Land is working as well,
but is only able to load the main menu, let the player press “start”, and load the first scene.
Although, sprites are not yet implemented; therefore, the sprite of Mario is not visible.

The CPU, Cartridge, Motherboard, RAM, Display, and Interaction has been imple-
mented with success. Emulating the boot-ROM turned out not to be unessential as it only
initializes hardware, shows the Nintendo logo, and checks for counterfeit games. These things
are either way initialized by the emulator.

The cartridge emulation has been found to make use of memory bank controllers. These
controllers make banking possible and extends the possibilities for games for the Game boy
considerably. Only Type 1 of the controllers is implemented with success.

For the implementation of the RAM, it does not seem to have any bugs. For increased
flexibility, the RAM handles all of the memory accesses for the CPU, but redirects some
tasks to the cartridge and other components. This moves the complexity into specialized
classes.

The display part of the Game Boy seems to work fully from what we observed, on screen.
Tiles and positions are correct on the screen, when comparing to other emulators. The
sprite engine and tile views allow for flexible 2D graphics on the Game Boy. Even though,
the possibilities to draw graphics are limited, it still produces 60 frames per second, while
not using excessive time on the CPU. Because of the difference in architecture from the host
system, all these features has to be emulated in software and takes up a lot of resources.
The drawing routines are a place, where optimizations will possibly have a high performance
gain.

We experienced bad performance with the emulator during the project. We made some
performance tests, which ended in a new and better implementation. The optimization
utilized look-up tables for decoding of opcodes. The use of the PyPy Just-In-Time compiler,
instead of the Python interpreter, made it possible to achieve the desired performance. This
was possible without optimizing the code extensively, which gave us more time to spend on
extending the emulator’s functionality.

32

References

[1]

About Simulator. https://developer.apple.com/library/ios/documentation/
IDEs/Conceptual/i0S_Simulator_Guide/Introduction/Introduction.html. [On-
line; accessed on 4 Januar 2016].

Blargg’s tests. http://gbdev.gg8.se/wiki/articles/Test_ROMs. [Online; accessed
on 12 Januar 2016].

Charting the Rise of the Solid State Disk Market. http://www.storagesearch.com/
chartingtheriseofssds.html. [Online; accessed on 21 December 2015].

Emulating the Core, Part 2: Interrupts and Timing. https://realboyemulator.
wordpress.com/2013/01/18/emulating-the-core-2/. [Online; accessed on 7 Januar
2016].

Game Boy accessories. https://en.wikipedia.org/wiki/Game_Boy_accessories.
[Online; accessed on 12 Januar 2016].

Game Boy Bootstrap ROM. http://gbdev.gg8.se/wiki/index.php?title=
Gameboy_Bootstrap_ROM&oldid=192. [Online; accessed on 22 December 2015].

Game Boy chips - CPU. http://www.tinytransistors.net/index.php7option=com_
content&view=article&id=11&Itemid=11&limitstart=1. [Online; accessed on 13
Januar 2016].

GBA4iOS Features. http://www.gbadiosapp.com/features/. [Online; accessed on 12
Januar 2016].

Happy 20th b-day, Game Boy: here are 6 reasons why you're #1. http://arstechnica.
com/gaming/2009/04/game-boy-20th-anniversary/. [Online; accessed on 21 Decem-
ber 2015].

How are lists implemented? https://docs.python.org/2/faq/design.html#
how-are-lists-implemented. [Online; accessed on 21 December 2015].

How fast is PyPy? http://speed.pypy.org. [Online; accessed on 7 Januar 2016].

Intel 8080. https://en.wikipedia.org/wiki/Intel_8080. [Online; accessed on 21
December 2015].

Intel 8080 Architecture. https://en.wikipedia.org/wiki/Intel_8080#/media/
File:Intel_8080_arch.svg. [Online; accessed on 4 Januar 2016].

Intel 8086. https://en.wikipedia.org/wiki/Intel_8086. [Online; accessed on 5
Januar 2016].

“Manually” extracting a ROM (Thread of a web forum). http://web.archive.org/
web/20060507053755/http://forums. cherryroms.com/viewtopic.php?t=3848&
start=75. [Online; accessed on 21 December 2015].

Memory Bank Controllers. http://gbdev.gg8.se/wiki/articles/Memory_Bank_
Controllers. [Online; accessed on 12 Januar 2016].

Pan Docs. http://problemkaputt.de/pandocs.htm. [Online; accessed on 12 January
2016].

33

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/Introduction/Introduction.html
http://gbdev.gg8.se/wiki/articles/Test_ROMs
http://www.storagesearch.com/chartingtheriseofssds.html
http://www.storagesearch.com/chartingtheriseofssds.html
https://realboyemulator.wordpress.com/2013/01/18/emulating-the-core-2/
https://realboyemulator.wordpress.com/2013/01/18/emulating-the-core-2/
https://en.wikipedia.org/wiki/Game_Boy_accessories
http://gbdev.gg8.se/wiki/index.php?title=Gameboy_Bootstrap_ROM&oldid=192
http://gbdev.gg8.se/wiki/index.php?title=Gameboy_Bootstrap_ROM&oldid=192
http://www.tinytransistors.net/index.php?option=com_content&view=article&id=11&Itemid=11&limitstart=1
http://www.tinytransistors.net/index.php?option=com_content&view=article&id=11&Itemid=11&limitstart=1
http://www.gba4iosapp.com/features/
http://arstechnica.com/gaming/2009/04/game-boy-20th-anniversary/
http://arstechnica.com/gaming/2009/04/game-boy-20th-anniversary/
https://docs.python.org/2/faq/design.html#how-are-lists-implemented
https://docs.python.org/2/faq/design.html#how-are-lists-implemented
http://speed.pypy.org
https://en.wikipedia.org/wiki/Intel_8080
https://en.wikipedia.org/wiki/Intel_8080#/media/File:Intel_8080_arch.svg
https://en.wikipedia.org/wiki/Intel_8080#/media/File:Intel_8080_arch.svg
https://en.wikipedia.org/wiki/Intel_8086
http://web.archive.org/web/20060507053755/http://forums.cherryroms.com/viewtopic.php?t=3848&start=75
http://web.archive.org/web/20060507053755/http://forums.cherryroms.com/viewtopic.php?t=3848&start=75
http://web.archive.org/web/20060507053755/http://forums.cherryroms.com/viewtopic.php?t=3848&start=75
http://gbdev.gg8.se/wiki/articles/Memory_Bank_Controllers
http://gbdev.gg8.se/wiki/articles/Memory_Bank_Controllers
http://problemkaputt.de/pandocs.htm

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

[30]

[31]

Pan Docs: Game Boy Technical Data. http://problemkaputt.de/pandocs.htm#
gameboytechnicaldata. [Online; accessed on 18 January 2016].

Pan Docs: Timer and Divider Registers. http://problemkaputt.de/pandocs.htm#
timeranddividerregisters. [Online; accessed on 13 January 2016].

Pan Docs: VRAM Sprite Attribute Table (OAM). http://problemkaputt.de/
pandocs.htm#vramspriteattributetableoam. [Online; accessed on 13 January 2016].

The N-dimensional array. http://docs.scipy.org/doc/numpy/reference/arrays.
ndarray.html. [Online; accessed on 21 December 2015].

Why are there separate tuple and list data types? https://docs.python.org/2/
fag/design.html#why-are-there-separate-tuple-and-list-data-types. [Online;
accessed on 21 December 2015].

Z80 Undocumented Features (in software behaviour). http://www.z80.info/
z80undoc3.txt. [Online; accessed on 21 December 2015].

Zilog 780. https://en.wikipedia.org/wiki/Zilog_Z80. [Online; accessed on 21 De-
cember 2015].

Det Kongelige Bibliotek. = Emuleringsstrategien. http://digitalbevaring.dk/
emulering/. [Online; accessed on 22 December 2015].

Zilog Inc. Z80 Microprocessors. www.zilog.com/manage_directlink.php?filepath=
docs/z80/um0080, 2015. [Online; accessed on 29 December 2015].

Marc Erich Latoschik. Realtime 3D Computer Graphics / Virtual Real-
ity. http://www.techfak.uni-bielefeld.de/ags/wbski/lehre/digiSA/WS0607/
3DVRCG/Vorlesung/13.RT3DCGVR-vertex—-2-fragment.pdf. [Online; accessed on 12
Januar 2016].

S. Okada. System for preventing the use of an unauthorized external memory, 1992. US
Patent 5,134,391.

David A. Patterson and John L. Hennessy. Computer Organization and Design, Fifth
Edition: The Hardware/Software Interface. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 5th edition, 2013.

Ignacio Sanchez. GitHub - GearBoy. https://github.com/drhelius/Gearboy. [On-
line; accessed on 14 Januar 2016].

Costis Sideris. FPGABoy. http://www.fpgb.org. [Online; accessed on 12 Januar
2016].

34

http://problemkaputt.de/pandocs.htm#gameboytechnicaldata
http://problemkaputt.de/pandocs.htm#gameboytechnicaldata
http://problemkaputt.de/pandocs.htm#timeranddividerregisters
http://problemkaputt.de/pandocs.htm#timeranddividerregisters
http://problemkaputt.de/pandocs.htm#vramspriteattributetableoam
http://problemkaputt.de/pandocs.htm#vramspriteattributetableoam
http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html
http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html
https://docs.python.org/2/faq/design.html#why-are-there-separate-tuple-and-list-data-types
https://docs.python.org/2/faq/design.html#why-are-there-separate-tuple-and-list-data-types
http://www.z80.info/z80undoc3.txt
http://www.z80.info/z80undoc3.txt
https://en.wikipedia.org/wiki/Zilog_Z80
http://digitalbevaring.dk/emulering/
http://digitalbevaring.dk/emulering/
www.zilog.com/manage_directlink.php?filepath=docs/z80/um0080
www.zilog.com/manage_directlink.php?filepath=docs/z80/um0080
http://www.techfak.uni-bielefeld.de/ags/wbski/lehre/digiSA/WS0607/3DVRCG/Vorlesung/13.RT3DCGVR-vertex-2-fragment.pdf
http://www.techfak.uni-bielefeld.de/ags/wbski/lehre/digiSA/WS0607/3DVRCG/Vorlesung/13.RT3DCGVR-vertex-2-fragment.pdf
https://github.com/drhelius/Gearboy
http://www.fpgb.org

Appendices

A Class Map

Legend:

—» Calls
Y)
N Module not implemented

O Module

——— Ownership el el
T { OpenGL { sound
\ Keyboard »--; \\\ I AR L
A P o Keyboard
{ 2Ddrawing }----4{ GLUT }
el - e 2D drawing
© sound F----- { Window_GLUT
Host System
e Guest System
. Sound
Oscillator
RAM -
| CPU
’ Fetch instruction (determine cB) ‘
s, v
\FIQ/' { Prepare registers, RAM data and imme. ‘
v
’ Execute ‘
I v
Cartridge | Save ‘

Figure 32: Map of all classes and their relations

35

B Page 14 of Zilog Z80 Reference Manual

Z80 CPU
User Manual

Ilog

2 | jomixys

CPU Register

The Z80 CPU contains 208 bits of read/write memory that are available to the program-
mer. Figure 2 shows how this memory is configured to eighteen 8-bit registers and four
16-bit registers. All Z80 CPU’s registers are implemented using static RAM. The registers
include two sets of six general-purpose registers that can be used individually as 8-bit reg-
isters or in pairs as 16-bit registers. There are also two sets of Accumulator and Flag regis-
ters and six special-purpose registers.

Main Register Set Alternate Register Set
Accumulator Flags Accumulator Flags
A F A’ F'
B c B' B’ General
D E D' E' Purpose
H L H' L Registers
Interrupt Vector Memory Refresh
| R
Index Register IX Special
: Purpose
Index Register Y Registers
Stack Pointer SP
Program Counter PC

Figure 2. CPU Register Configuration

Special-Purpose Registers

Program Counter (PC). The program counter holds the 16-bit address of the current
instruction being fetched from memory. The Program Counter is automatically incre-
mented after its contents are transferred to the address lines. When a program jump occurs,
the new value is automatically placed in the Program Counter, overriding the incrementer.

Stack Pointer (SP). The stack pointer holds the 16-bit address of the current top of a stack
located anywhere in external system RAM memory. The external stack memory is orga-
nized as a last-in first-out (LIFO) file. Data can be pushed onto the stack from specific
CPU registers or popped off of the stack to specific CPU registers through the execution of
PUSH and POP instructions. The data popped from the stack is always the most recent
data pushed onto it. The stack allows simple implementation of multiple level interrupts,
unlimited subroutine nesting and simplification of many types of data manipulation.

Architectural Overview UMO008007-0715

36

C Boot-ROM picture

Figure 33: Complete picture of the boot-ROM

D Performance test results

Lists vs. Tuples vs. If-statements

NumPy Array | List Tuple | If-statements

2 0.0049 | 0.0042 | 0.0049 0.0032

4 0.0097 | 0.0087 | 0.0090 0.0075

8 0.0201 | 0.0162 | 0.0178 0.0181
16 0.0387 | 0.0311 | 0.0377 0.0510
32 0.0850 | 0.0645 | 0.0755 0.1593
64 0.1515 | 0.1343 | 0.1488 0.5029
128 0.3040 | 0.2425 | 0.2813 1.8293
256 0.5992 | 0.4828 | 0.5619 6.9974
512 1.1889 | 0.9648 | 1.1125 27.2913

Figure 34: Test results when comparing NumPy array, Python lists, Python tuples and if-statements.
Values are in seconds with 30.000 repeatitions. Green indicates the fastest technique. Yellow is the
second fastest technique.

37

E CPU dissection

.ili!.; W kk

¥ N W Ry Ll

Figure 35: Overview picture of the Sharp LR35902 CPU[]

F Data basis for optimization efforts

3.0000
Init Cartridge
Commit Hash Python Pypy 2.2500
4bba9c737572 2.5337 0.3299
117beb6c059a 2.1089 0.4079 §
d459b4e9dfo1 2.4332 0.3811 -i 1.5000
d09ab2fcf116 2.3255 0.3596 E
9a712a0fb67f 2.3872 0.3711
86c6076929f5 2.1833 0.3870 0.7500
112d55a40832 0.2629 0.0501
098253632c6e 0.2727 0.0516 m
0.0000

2/S/€.064aY
B6S029099/ L1
16JP69706SYP
911042qe60P
1/99)0e2 | /86
G16269209998
2€8078SSPe L
9902£9£52860

Figure 36: Render time for each frame in the boot-ROM with the original implementation

Keep in mind, that this test was conducted before all opcodes had been completely imple-
mented. The two Python implementations would run the same code, but the code didn’t
behave as expected by a Game Boy.

38

G Performance comparison between Pypy and Python

Seconds per frame

Performance comparison between Python and Pypy

03 — Python — Pypy -- 60 FPS

0.25

02 w

100 150 200 250 300 350
Frames

Figure 37: Render time for each frame in the boot-ROM

39

H Results of Test ROMs

Bl-special BZ-interrupts

BCZADB92 A BZ-op sp,hl
DAA Timer doesn't work
39_%3 E& F& F&

Failed HE Failed #4 Failed

B4—-op r, imnn B3—-op rp pe—-1d r,r
FE Cs CE DB DE B9 19 29
Failed Failed Fassed

By—ir,ip,call,ret,rs
't e : 2 16-bit ops

B9—-op r,r
Fasced Fassed

Hi-op a, [hl)

BE 86 8E 96 9E 35 34
Failed

Figure 88: Results of Test ROMs

40

	Introduction
	Motivation
	What is a Game Boy
	Terminology

	Emulation
	Architechture
	Structure
	Interconnection
	Implementation

	Partial Conclusion

	Central Processing Unit
	Sharp LR35902
	Opcodes
	Registers
	General purpose registers
	Special registers

	Operations
	Arithmetic Logic Unit
	Load data
	Jumps

	Interrupts
	VBLANK
	LCDC
	SERIAL
	TIMER
	HiToLo
	HALT

	Emulation
	Partial conclusion

	Boot-ROM
	Extraction
	Physical
	Software

	Disassembly
	Emulation
	Partial Conclusion

	Cartridge
	Memory banking
	Adding Functionality
	Memory Bank Controllers
	Cartridge types

	Emulation
	Partial Conclusion

	Random Access Memory
	Overview
	Banking
	Video RAM
	Special addresses
	Emulation
	Partial conclusion

	Display
	Tiles
	Tile Data
	Tile Views
	Viewport
	Sprites
	DMA to OAM

	Registers
	LCD Display
	LCD Status
	LCD Position and Scrolling

	LCD
	Emulation
	Partial conclusion

	Interaction
	Emulation
	Partial conclusion

	Verifying solution
	Debugging
	Unit test
	CPU
	Display
	RAM
	Cartridge

	Test-ROMs
	Partial Conclusion

	Performance
	Finding optimal datastruture
	Test purpose
	Test setup
	Datatypes
	Test results

	Interpreter vs. JIT
	Test purpose
	Test setup
	Results
	Test enviorment

	Partial conclusion

	Conclusion
	Appendices
	Class Map
	Page 14 of Zilog Z80 Reference Manual
	Boot-ROM picture
	Performance test results
	CPU dissection
	Data basis for optimization efforts
	Performance comparison between Pypy and Python
	Results of Test ROMs

